12.設向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),若$\overrightarrow a$∥$\overrightarrow b$,則x=$\frac{5}{2}$.

分析 根據(jù)平面向量的坐標表示與共線定理,列出方程求出x的值.

解答 解:∵向量$\overrightarrow a$=(-2,3),$\overrightarrow b$=(-1,x-1),且$\overrightarrow a$∥$\overrightarrow b$,
∴-2(x-1)-3×(-1)=0,
解得x=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.

點評 本題考查了平面向量的坐標表示與共線定理的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.正方體ABCD-A1B1C1D1中,連接A1C1,A1B,BC1,AD1,AC,CD1
(1)求證:A1C1∥平面ACD1;
(2)求證:平面A1BC1∥平面ACD1
(3)設正方體ABCD-A1B1C1D1的棱長為a,求四面體ACB1D1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,在平面直角坐標系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,左頂點(-4,0),過點A作斜率為k(k≠0)的直線l交橢圓C于D,交y軸于E.
(1)求橢圓的方程;
(2)已知點P為AD的中點,是否存在定點Q,對于任意的k(k≠0),都有OP⊥EQ?若存在,求出點Q的坐標;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.若sinα=$\frac{3}{5}$且α是第二象限角,則$cot({\frac{α}{2}-\frac{π}{4}})$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知x,y滿足約束條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-1≥0\\ y≤1\end{array}\right.$,則目標函數(shù)z=2x+y的最大值為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.水是最常見的物質之一,是包括人類在內所有生命生存的重要資源,也是生物體最重要的組成部分.為了推動對水資源進行綜合性統(tǒng)籌規(guī)劃和管理,加強水資源保護,解決日益嚴峻的淡水缺乏問題,開展廣泛的宣傳以提高公眾對開發(fā)和保護水資源的認識.中國水利部確定每年的3月22日至28日為“中國水周”,以提倡市民節(jié)約用水.某市統(tǒng)計局調查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如圖所示.將月用水量落入各組的頻率視為概率,并假設每天的用水量相互獨立.
(Ⅰ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計該地家庭的平均用水量;
(Ⅱ)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的月用水量低于4噸的概率;
(Ⅲ)用X表示在未來3個月里用水量低于12噸的月數(shù),求隨機變量X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在復平面內,復數(shù)$\frac{3-i}{1-i}$對應的點的坐標為( 。
A.(2,1)B.(1,-2)C.(1,2)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知M(-2$\sqrt{2}$,0),N(2$\sqrt{2}$,0)為橢圓的左、右頂點,P是橢圓上異于M,N的動點,且△PMN的面積最大值為4$\sqrt{2}$.
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)四邊形ABCD的頂點都在橢圓上,且對角線AC,BD過原點,kAC•kBD=-$\frac{b^2}{a^2}$,求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設Sn是等比數(shù)列{an}的前n項和,若S2=2,S6=4,則S4=(  )
A.1+$\sqrt{5}$B.$\frac{10}{3}$C.2$\sqrt{2}$D.3

查看答案和解析>>

同步練習冊答案