【題目】如圖,已知焦點(diǎn)在軸上的橢圓的中心是原點(diǎn),離心率為,以橢圓的端州的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長(zhǎng)為8,直線(xiàn)軸交于點(diǎn),與橢圓交于不同兩點(diǎn),

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,的取值范圍

【答案】(1);(2).

【解析】

試題分析:(1)由焦點(diǎn)三角形的周長(zhǎng)為,可得的值,運(yùn)用離心率公式和,的關(guān)系,解方程可得,,進(jìn)而得到橢圓方程;(2)由題意可得,設(shè),運(yùn)用向量共線(xiàn)的坐標(biāo)表示和直線(xiàn)方程代入橢圓方程,運(yùn)用韋達(dá)定理,可得代入,再由不等式的性質(zhì),可得所求范圍.

試題解析:(1)由已知可得以橢圓的短軸的兩端點(diǎn)和兩焦點(diǎn)所圍成的四邊形的周長(zhǎng)為,

,

橢圓的標(biāo)準(zhǔn)方程為

(2)根據(jù)已知得,設(shè),

由已知得,即

,

,

代入上式可得,,

所以,得,代入

整理得,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,太湖一個(gè)角形湖灣 常數(shù)為銳角. 擬用長(zhǎng)度為為常數(shù)的圍網(wǎng)圍成一個(gè)養(yǎng)殖區(qū),有以下兩種方案可供選擇:

方案一 如圖1,圍成扇形養(yǎng)殖區(qū),其中;

方案二 如圖2,圍成三角形養(yǎng)殖區(qū),其中;

1求方案一中養(yǎng)殖區(qū)的面積;

2求方案二中養(yǎng)殖區(qū)的最大面積

3為使養(yǎng)殖區(qū)的面積最大,應(yīng)選擇何種方案?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

)若函數(shù)處取得極值,求實(shí)數(shù)的值;

)在()的條件下,函數(shù) (其中為函數(shù)的導(dǎo)數(shù))的圖像關(guān)于直線(xiàn)對(duì)稱(chēng),求函數(shù)單調(diào)區(qū)間;

)在()的條件下,若對(duì)任意的,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列滿(mǎn)足 , ),稱(chēng)數(shù)列數(shù)列,記為其前項(xiàng)和.

(Ⅰ)寫(xiě)出一個(gè)滿(mǎn)足,且數(shù)列;

(Ⅱ)若 ,證明:若數(shù)列是遞增數(shù)列,則;反之,若,則數(shù)列是遞增數(shù)列;

(Ⅲ)對(duì)任意給定的整數(shù)),是否存在首項(xiàng)為0的數(shù)列,使得?如果存在,寫(xiě)出一個(gè)滿(mǎn)足條件的數(shù)列;如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)求的展開(kāi)式中的系數(shù)及展開(kāi)式中各項(xiàng)系數(shù)之和;

(2)從0,2,3,4,5,6這6個(gè)數(shù)字中任取4個(gè)組成一個(gè)無(wú)重復(fù)數(shù)字的四位數(shù),求滿(mǎn)足條件的四位數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】劉徽是我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問(wèn)題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高幾何?” 意思是:為了測(cè)量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線(xiàn)上,從前表退行123步,人恰觀測(cè)到島峰,從后表退行127步,也恰觀測(cè)到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;

(2)討論函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列正確命題有__________

①“”是“”的充分不必要條件

②如果命題“”為假命題,則中至多有一個(gè)為真命題

③設(shè),若,則的最小值為

④函數(shù)上存在,使,則a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了研究某種微生物的生長(zhǎng)規(guī)律,需要了解環(huán)境溫度)對(duì)該微生物的活性指標(biāo)的影響,某實(shí)驗(yàn)小組設(shè)計(jì)了一組實(shí)驗(yàn),并得到如表的實(shí)驗(yàn)數(shù)據(jù):

環(huán)境溫度

1

2

3

4

5

6

7

活性指標(biāo)

(Ⅰ)由表中數(shù)據(jù)判斷關(guān)于的關(guān)系較符合還是,并求關(guān)于的回歸方程(取整數(shù));

(Ⅱ)根據(jù)(Ⅰ)中的結(jié)果分析:若要求該種微生物的活性指標(biāo)不能低于,則環(huán)境溫度應(yīng)不得高于多少?

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案