20.設(shè)點(diǎn)M的直角坐標(biāo)為(1,1,$\sqrt{2}$),求它的球坐標(biāo).

分析 根據(jù)球坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系計(jì)算即可.

解答 解:設(shè)M的球坐標(biāo)為(r,φ,θ),其中r≥0,0≤φ≤π,0≤θ<2π,
則r=OM=$\sqrt{{1}^{2}+{1}^{2}+(\sqrt{2})^{2}}$=2,
cosφ=$\frac{\sqrt{2}}{2}$,∴φ=$\frac{π}{4}$.
又$\left\{\begin{array}{l}{cosθ=\frac{1}{\sqrt{2}}}\\{sinθ=\frac{1}{\sqrt{2}}}\end{array}\right.$,∴θ=$\frac{π}{4}$.
∴M的球坐標(biāo)為(2,$\frac{π}{4}$,$\frac{π}{4}$).

點(diǎn)評(píng) 本題考查了球坐標(biāo)與直角坐標(biāo)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,下列命題中正確的命題是( 。
A.m⊥α,n?β,m⊥n⇒α⊥βB.α⊥β,α∩β=m,n⊥m⇒n⊥β
C.α⊥β,m⊥α,n∥β⇒m⊥nD.α∥β,m⊥α,n∥β⇒m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=xcos(3x+$\frac{3}{2}$π)是(  )
A.奇函數(shù)B.偶函數(shù)C.非奇非偶函數(shù)D.既奇又偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=cos(2x$-\frac{π}{3}$)-2sin(x$+\frac{π}{4}$)cos(x$+\frac{π}{4}$)
(1)求函數(shù)f(x)的最小正周期;
(Ⅱ)求函數(shù)f(x)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{2}$]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知銳角α,β滿足sin(α+β)cosβ=2cos(α+β)sinβ,當(dāng)α取得最大值時(shí),tan2α=$\frac{4\sqrt{2}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx;g(x)=$\frac{lnx}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e-g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時(shí),對(duì)于?x1∈[1,e],?x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.以下有關(guān)命題的說(shuō)法錯(cuò)誤的是(  )
A.命題“若x2-3x+2=0,則x=1”逆否命題為“若x≠1,則x2-3x+2≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要條件
C.對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0
D.若p∧q為假命題,則p、q均為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.運(yùn)行程序,輸入n=4,則輸出y的值是( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{2}-\sqrt{6}}{4}$C.$\frac{\sqrt{6}+\sqrt{2}}{4}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.投籃測(cè)試中,每人投3次,至少投中2次才能通過(guò)測(cè)試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)通過(guò)測(cè)試的概率為( 。
A.0.312B.0.36C.0.432D.0.648

查看答案和解析>>

同步練習(xí)冊(cè)答案