9.若f(x+2)=$\left\{\begin{array}{l}{tanx,x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,則f($\frac{π}{4}$+2)•f(-2)=(  )
A.-1B.1C.2D.-2

分析 化簡f($\frac{π}{4}$+2)•f(-2)=f($\frac{π}{4}$+2)•f(-4+2),從而根據(jù)分段函數(shù)分別代入即可.

解答 解:f($\frac{π}{4}$+2)•f(-2)=f($\frac{π}{4}$+2)•f(-4+2),
又∵f(x+2)=$\left\{\begin{array}{l}{tanx,x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$,
∴f($\frac{π}{4}$+2)•f(-4+2)=tan$\frac{π}{4}$•log24=2,
故選:C.

點評 本題考查了轉(zhuǎn)化思想與分段函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)Sn是公差不為0的等差數(shù)列{an}的前n項和,且S1,S2,S4成等比數(shù)列,a5=9.
(1)求數(shù)列{an}的通項公式;
(2)證明:$\frac{1}{S_2}$+$\frac{1}{S_3}$+…+$\frac{1}{{{S_{n+1}}}}$<$\frac{3}{4}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于R上的可導(dǎo)函數(shù)f(x),若a>b>1且有(x-1)f′(x)≥0,則必有(  )
A.f(a)+f(b)<2f(1)B.f(a)+f(b)≤2f(1)C.f(a)+f(b)≥2f(1)D.f(a)+f(b)>2f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)數(shù)列{an}的通項公式為an=n($\frac{9}{10}$)n.關(guān)于數(shù)列{an}敘述正確的是( 。
A.數(shù)列{an}的項隨n的增大而增大
B.數(shù)列{an}的項隨n的增大而減少
C.對于數(shù)列{an}中的項an,存在唯一k(k∈N*),使an≤ak對任意n∈N*都成立
D.數(shù)列{an}中存在相等的兩個項

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=Asin($\frac{x}{3}$-φ)(A>0,0<φ<$\frac{π}{2}$)的最大值為2,其圖象經(jīng)過點M(π,1)
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)α,β∈[0,$\frac{π}{2}$],f(3α+$\frac{π}{2}$)=$\frac{10}{13}$,f(3β+2π)=$\frac{6}{5}$,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知g(x)=1-2x,f[g(x)]=$\frac{2x}{2-{x}^{2}}$,則f($\frac{1}{2}$)=$\frac{8}{31}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.與兩條平行直線l1:2x-3y+4=0和l2:2x-3y-2=0距離相等的直線l的方程為2x-3y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.比較1816與1618的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x+y=1與圓x2+y2=1的位置關(guān)系為(  )
A.相切B.相交但直線不過圓心
C.直線過圓心D.相離

查看答案和解析>>

同步練習(xí)冊答案