【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)若,求證:函數(shù)只有一個(gè)零點(diǎn),且.
【答案】(Ⅰ)函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和當(dāng)時(shí),. 所以,函數(shù)的單調(diào)遞減區(qū)間是當(dāng)時(shí),,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和;(Ⅱ)證明見(jiàn)解析
【解析】
試題(Ⅰ)先求出函數(shù)的定義域,求出函數(shù)的導(dǎo)數(shù),再令,求得解,
討論當(dāng)時(shí)及,列出函數(shù)與隨的變化情況得到函數(shù)的單調(diào)區(qū)間
(Ⅱ)當(dāng)時(shí),由(Ⅰ)知,函數(shù)的極小值,極大值,并且極小值與極大值均大于0,又由函數(shù)在是減函數(shù),可得至多有一個(gè)零點(diǎn),又由可得函數(shù)只有一個(gè)零點(diǎn),且,得到證明
試題解析:(Ⅰ)解:的定義域?yàn)?/span>.
令,或
當(dāng)時(shí),,函數(shù)與隨的變化情況如下表:
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和
當(dāng)時(shí),. 所以,函數(shù)的單調(diào)遞減區(qū)間是
當(dāng)時(shí),,函數(shù)與隨的變化情況如下表:
所以,函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是和.
(Ⅱ)證明:當(dāng)時(shí),由(Ⅰ)知,的極小值為,極大值為.
因?yàn)?/span>,且又由函數(shù)在是減函數(shù),可得至多有一個(gè)零點(diǎn). 又因?yàn)?/span>,所以 函數(shù)只有一個(gè)零點(diǎn),且.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中, 于, .將沿折起至,使得平面平面(如圖2), 為線(xiàn)段上一點(diǎn).
圖1 圖2
(Ⅰ)求證: ;
(Ⅱ)若為線(xiàn)段中點(diǎn),求多面體與多面體的體積之比;
(Ⅲ)是否存在一點(diǎn),使得平面?若存在,求的長(zhǎng).若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)導(dǎo)師計(jì)劃從自己所培養(yǎng)的研究生甲、乙兩人中選一人,參加雄安新區(qū)某部門(mén)組織的計(jì)算機(jī)技能大賽,兩人以往5次的比賽成績(jī)統(tǒng)計(jì)如下:(滿(mǎn)分100分,單位:分).
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(jī) | 87 | 87 | 84 | 100 | 92 |
乙的成績(jī) | 100 | 80 | 85 | 95 | 90 |
(1)試比較甲、乙二人誰(shuí)的成績(jī)更穩(wěn)定;
(2)在一次考試中若兩人成績(jī)之差的絕對(duì)值不大于2,則稱(chēng)兩人“實(shí)力相當(dāng)”.若從上述5次成績(jī)中任意抽取2次,求恰有一次兩人“實(shí)力相當(dāng)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)設(shè)為橢圓上任一點(diǎn), 為其右焦點(diǎn), 是橢圓的左、右頂點(diǎn),點(diǎn)滿(mǎn)足.
①證明: 為定值;
②設(shè)是直線(xiàn)上的任一點(diǎn),直線(xiàn)分別另交橢圓于兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(–1,2),B(2,8)以及,=–13,求點(diǎn)C、D的坐標(biāo)和的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】—般地,若函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,則稱(chēng)為的“倍跟隨區(qū)間”;特別地,若函數(shù)的定義域?yàn)?/span>,值域也為,則稱(chēng)為的“跟隨區(qū)間”.下列結(jié)論正確的是( )
A.若為的跟隨區(qū)間,則
B.函數(shù)不存在跟隨區(qū)間
C.若函數(shù)存在跟隨區(qū)間,則
D.二次函數(shù)存在“3倍跟隨區(qū)間”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓和橢圓, 是橢圓的左焦點(diǎn).
(Ⅰ)求橢圓的離心率和點(diǎn)的坐標(biāo);
(Ⅱ)點(diǎn)在橢圓上,過(guò)作軸的垂線(xiàn),交圓于點(diǎn)(不重合),是過(guò)點(diǎn)的圓的切線(xiàn).圓的圓心為點(diǎn),半徑長(zhǎng)為.試判斷直線(xiàn)與圓的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】食品安全問(wèn)題越來(lái)越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來(lái)了一定的危害.為了給消費(fèi)者帶來(lái)放心的蔬菜,某農(nóng)村合作社每年投入資金萬(wàn)元,搭建甲、乙兩個(gè)無(wú)公害蔬菜大棚,每個(gè)大棚至少要投入資金萬(wàn)元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬(wàn)元)滿(mǎn)足,.設(shè)甲大棚的資金投入為(單位:萬(wàn)元),每年兩個(gè)大棚的總收入為(單位:萬(wàn)元).
(1)求的值;
(2)試問(wèn)如何安排甲、乙兩個(gè)大棚的資金投入,才能使總收入最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列說(shuō)法
①互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件
②演繹推理是從特殊到一般的推理,它的一般模式是“三段論”
③殘差圖的帶狀區(qū)域的寬度越窄,說(shuō)明模型擬合精度越高,回歸方程的預(yù)報(bào)精度越高
④若,則事件與互斥且對(duì)立
⑤甲乙兩艘輪船都要在某個(gè)泊位?4小時(shí),假定它們?cè)谝粫円沟臅r(shí)間段中隨機(jī)到達(dá),則這兩艘船中至少有一艘在停靠泊位時(shí)必須等待的概率為.
其中正確的說(shuō)法是______(寫(xiě)出全部正確說(shuō)法的序號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com