A. | (1007$\sqrt{2}$,1007$\sqrt{2}$) | B. | (-1007$\sqrt{2}$,1007$\sqrt{2}$) | C. | (1007,1007$\sqrt{3}$) | D. | (1007$\sqrt{3}$,1007) |
分析 由題意可設設向量$\overrightarrow{a}$的坐標是(x,y),根據任意角的三角形函數即可求出.
解答 解:|$\overrightarrow{a}$|=2014,$\overrightarrow{a}$與x軸非負半軸的夾角為$\frac{π}{3}$,$\overrightarrow{a}$始點與原點重合,終點在第一象限,
設向量$\overrightarrow{a}$的坐標是(x,y),
∴x=|$\overrightarrow{a}$|cos$\frac{π}{3}$=1007,y=|$\overrightarrow{a}$|sin$\frac{π}{3}$=1007$\sqrt{3}$,
∴向量$\overrightarrow{a}$的坐標是(1007,1007$\sqrt{3}$),
故選:C.
點評 本題考查了任意角的三角函數,以及向量的模,向量的坐標,屬于基礎題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1-{a}^{n}}{1-a}$ | B. | $\frac{1-{a}^{n+1}}{1-a}$ | C. | 1+n或$\frac{1-{a}^{n}}{1-a}$ | D. | 1+n或$\frac{1-{a}^{n+1}}{1-a}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0<r<$\sqrt{2}$ | B. | 0<r<$\frac{\sqrt{11}}{2}$ | C. | 0<r<$\sqrt{3}$ | D. | 0<r<$\frac{\sqrt{13}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com