如圖,直四棱柱
的底面是邊長為1的正方形,側(cè)棱長
,則異面直線
與
的夾角大小等于___________.
試題分析:∵
∥AB,∴異面直線
與
的夾角為直線AB與
的夾角,連接
,在
中,
,∴
即異面直線
與
的夾角大小等于
點(diǎn)評:利用平移法把異面直線的夾角轉(zhuǎn)化為三角形中的夾角問題
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
四棱錐
,面
⊥面
.側(cè)面
是以
為直角頂點(diǎn)的等腰直角三角形,底面
為直角梯形,
,
∥
,
⊥
,
為
上一點(diǎn),且
.
(Ⅰ)求證
⊥
;
(Ⅱ)求二面角
的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分12分)三棱錐
中,
,
,
.
(Ⅰ)求證:平面
平面
;
(Ⅱ)當(dāng)
時(shí),求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,一個(gè)三棱柱形容器中盛有水,且側(cè)棱
AA1=8.若側(cè)面
AA1
B1
B水平放置時(shí),液面恰好過
AC,
BC,
A1
C1,
B1
C1的中點(diǎn).則當(dāng)?shù)酌鍭BC水平放置時(shí),液面高為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正方體
中,直線
與
( )
A.異面且垂直 | B.異面但不垂直 |
C.相交且垂直 | D.相交但不垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
(理)如圖,將∠
B=,邊長為1的菱形
ABCD沿對角線
AC折成大小等于
θ的二面角
B-
AC-
D,若
θ∈[,],
M、
N分別為
AC、
BD的中點(diǎn),則下面的四種說法:
①
AC⊥
MN;
②
DM與平面
ABC所成的角是
θ;
③線段
MN的最大值是,最小值是;
④當(dāng)
θ=時(shí),
BC與
AD所成的角等于.
其中正確的說法有
(填上所有正確說法的序號).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐
中,底面
是矩形,
平面
,
,
.
于點(diǎn)
,
是
中點(diǎn).
(1)用空間向量證明:AM⊥MC,平面
⊥平面
;
(2)求直線
與平面
所成的角的正弦值;
(3)求點(diǎn)
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,平面
⊥平面
,
是直角三角形,
,四邊形
是直角梯形,其中
,
,
,且
,
是
的中點(diǎn),
分別是
的中點(diǎn).
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)如圖,四邊形
與
均為菱形,
,且
,
(Ⅰ)求證:
平面
;
(Ⅱ)求證:AE∥平面FCB;
(Ⅲ)求二面角
的余弦值。
查看答案和解析>>