【題目】已知圓錐曲線 為參數(shù))和定點(diǎn) F1 , F2是圓錐曲線的左右焦點(diǎn)。
(1)求經(jīng)過點(diǎn)F2且垂直于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程.

【答案】
(1)解:圓錐曲線

化為普通方程)

所以 , ,則直線 的斜率

于是經(jīng)過點(diǎn) 且垂直于直線 的直線l的斜率

直線l的傾斜角為

所以直線l參數(shù)方程 ,


(2)解:直線AF2的斜率k=- ,傾斜角是120°,設(shè)P(ρ,θ)是直線AF2上任一點(diǎn)即ρsin(120°-θ)=sin60°,化簡得 ρcosθ+ρsinθ= ,故可知
【解析】本題主要考查了橢圓的參數(shù)方程,解決問題的關(guān)鍵是(1)利用三角函數(shù)中的平方關(guān)系消去參數(shù)θ,將圓錐曲線化為普通方程,從而求出其焦點(diǎn)坐標(biāo),再利用直線的斜率求得直線L的傾斜角,最后利用直線的參數(shù)方程形式,即可得到直線L的參數(shù)方程.(2)設(shè)P(ρ,θ)是直線AF2上任一點(diǎn),利用正弦定理列出關(guān)于ρ、θ的關(guān)系式,化簡即得直線AF2的極坐標(biāo)方程.
【考點(diǎn)精析】本題主要考查了橢圓的參數(shù)方程的相關(guān)知識點(diǎn),需要掌握橢圓的參數(shù)方程可表示為才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求a;

(2)證明:存在唯一的極大值點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),向量 =(sinα,1), =(cosα,0), =(﹣sinα,2),點(diǎn)P是直線AB上的一點(diǎn),且 =
(1)若O,P,C三點(diǎn)共線,求tanα的值;
(2)在(Ⅰ)條件下,求 +sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對高一年級學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如圖:

分組

頻數(shù)

頻率

[10,15)

20

0.25

[15,20)

50

n

[20,25)

m

p

[25,30)

4

0.05

合計(jì)

M

N


(1)求表中n,p的值和頻率分布直方圖中a的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);
(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在[10,15)和[25,30)的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在[10,15)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,且。

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)設(shè),若存在極大值,且對于的一切可能取值, 的極大值均小于0,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)當(dāng)時(shí),若,證明:當(dāng)時(shí), 的圖象恒在的圖象上方;

(3)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次國際學(xué)術(shù)會議上,來自四個(gè)國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:

甲是中國人,還會說英語.

乙是法國人,還會說日語.

丙是英國人,還會說法語.

丁是日本人,還會說漢語.

戊是法國人,還會說德語.

則這五位代表的座位順序應(yīng)為( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=(m2﹣m﹣1)x5m3在(0,+∞)上是增函數(shù),又g(x)=loga (a>1).
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)x∈(t,a)時(shí),g(x)的值域?yàn)椋?,+∞),試求a與t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,P是⊙O所在平面外一點(diǎn),PA垂直于⊙O所在平面,且PA=AB=10,設(shè)點(diǎn)C為⊙O上異于A、B的任意一點(diǎn).

(1)求證:BC⊥平面PAC;
(2)若AC=6,求三棱錐C﹣PAB的體積.

查看答案和解析>>

同步練習(xí)冊答案