分析 由2an+(-1)n•an=2n+(-1)n•2n,得當n=2k-1(k∈N*)時,可得a2k-1=0.當n=2k時,$3{a}_{2k}={2}^{2k+1}$,即a2k=$\frac{{2}^{2k+1}}{3}$.再利用等比數列的前n項公式即可得出答案.
解答 解:∵2an+(-1)n•an=2n+(-1)n•2n,
∴當n=2k-1(k∈N*)時,2a2k-1-a2k-1=0,即a2k-1=0.
當n=2k時,$3{a}_{2k}={2}^{2k+1}$,即a2k=$\frac{{2}^{2k+1}}{3}$.
∴S10=a2+a4+…+a10
=$\frac{{2}^{3}+{2}^{5}+…+{2}^{11}}{3}$=$\frac{\frac{8({4}^{5}-1)}{4-1}}{3}$=$\frac{2728}{3}$.
故答案為:$\frac{2728}{3}$.
點評 本題考查了等比數列的前n項公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 36π | B. | 28π | C. | 16π | D. | 12π |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $81-27\sqrt{3}$ | B. | 54 | C. | 38-1 | D. | 80 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com