命題“?x∈[-2,1],x2-a≤0”為真命題的一個(gè)必要不充分條件是(  )
A、a≥4B、a≥1
C、a≤4D、a≤1
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡易邏輯
分析:求出命題的等價(jià)條件,結(jié)合充分條件和必要條件的定義即可得到結(jié)論.
解答: 解:若命題“?x∈[-2,1],x2-a≤0”為真命題,
則a≥(x2max=4,
則a≥1是a≥4的必要不充分條件,
故選:B
點(diǎn)評:本題主要考查充分條件和必要條件的應(yīng)用,求出命題的等價(jià)條件是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π
2
,G是BC的中點(diǎn).AB=BC=2AD=4,E、F分別是AB、CD上的動點(diǎn),且EF∥BC,設(shè)AE=x(0<x<2),沿EF將梯形ABCD翻折,使使平面AEFD⊥平面EBCF,如圖.
(1)當(dāng)x=2時(shí),求證:BD⊥EG;
(2)若以B、C、D、F為頂點(diǎn)的三棱錐的體積記為f(x),求f(x)的最大值;
(3)當(dāng)f(x)取得最大值時(shí),求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x
,y=x2,y=3x,y=log2x中,在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A、y=
1
x
B、y=x2
C、y=3x
D、y=log2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C所對的邊,a=2,b=
7
,∠B=60°,則邊長c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,若直線l:ax+by=1平分圓x2+y2-2x-2y-3=0的周長,則
1
a
+
2
b
的最小值為(  )
A、4
2
B、3+2
2
C、2
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+2x-3≤0},B={x|(x-2a)[x-(a2+1)]≤0},若“x∈A”是“x∈B”的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={1,2,3},B={x|x⊆A},則下列關(guān)系表述正確的是( 。
A、A∈BB、A∉B
C、A?BD、A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓的一個(gè)焦點(diǎn)為(
3
,0)
,且a=2b,則橢圓的標(biāo)準(zhǔn)方程為(  )
A、
x2
4
+y2
=1
B、
x2
2
+y2
=1
C、
y2
4
+x2
=1
D、
y2
2
+x2
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln x-
a
x

(1)若f(x)存在最小值且最小值為2,求a的值;
(2)設(shè)g(x)=lnx-a,若g(x)<x2在(0,e]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案