19.化簡:$\frac{si{n}^{3}(π+α)+co{s}^{3}(2π-α)}{sin(3π+α)+cos(4π-α)}$+sin(π-α)cos(π+α)

分析 利用誘導公式化簡,展開立方差公式,結(jié)合同角三角函數(shù)的基本關系式得答案.

解答 解:$\frac{si{n}^{3}(π+α)+co{s}^{3}(2π-α)}{sin(3π+α)+cos(4π-α)}$+sin(π-α)cos(π+α)
=$\frac{-si{n}^{3}α+co{s}^{3}α}{-sinα+cosα}+sinα•(-cosα)$
=$\frac{(-sinα+cosα)(si{n}^{2}α+sinαcosα+co{s}^{2}α)}{-sinα+cosα}$-sinαcosα=1.

點評 本題考查三角函數(shù)的化簡求值,考查了誘導公式及同角三角函數(shù)基本關系式的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.命題“存在x0∈R,log2x0<0”的否定是( 。
A.?x∈R,log2x>0B.不存在x0∈R,使log2x0>0
C.假命題D.真命題

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{lo{g}_{2}(x+1),x>1}\end{array}\right.$且方程[f(x)]2-af(x)+2=0恰有四個不同的實根,則實數(shù)a的取值范圍是( 。
A.(-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞)B.(2$\sqrt{2}$,3)C.(2,3)D.(2$\sqrt{2}$,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在獨立性檢驗中,隨機變量K2有兩個臨界值:3.841和6.635;當K2>3.841時,有95%的把握說明兩個事件有關,當K2>6.635時,有99%的把握說明兩個事件有關,當K2≤3.841時,認為兩個事件無關,在一項打鼾與患心臟病的調(diào)查中,共調(diào)查了2 000人,經(jīng)計算得k=20.87,根據(jù)這一數(shù)據(jù)分析( 。
A.在犯錯誤的概率不超過0.05的前提下,認為打鼾與患心臟病有關
B.約有95%的打鼾者患心臟病
C.在犯錯誤的概率不超過0.01的前提下,認為打鼾與患心臟病有關
D.約有99%的打鼾者患心臟病

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.投擲兩顆質(zhì)地均勻的骰子,則向上的點數(shù)之和為5的概率等于$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求下列函數(shù)的定義域與值域:
(1)y=$\sqrt{1-(\frac{1}{2})^{x}}$;
(2)y=$\frac{{a}^{x}-1}{{a}^{x}+1}$(a>0,且a≠1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知三棱錐P-ABC的頂點P在平面ABC內(nèi)的射影為點H,側(cè)棱PA=PB=PC,點O為三棱錐P-ABC的外接球O的球心,AB=8,AC=6,已知$\overrightarrow{AO}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$+$\frac{1}{{1+\sqrt{3}}}$$\overrightarrow{HP}$,且λ+μ=1,則球O的表面積為150π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.一個圓臺上、下底面半徑分別為r、R,高為h,若其側(cè)面積等于兩底面面積之和,則下列關系正確的是( 。
A.$\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$B.$\frac{1}{h}$=$\frac{1}{R}$+$\frac{1}{r}$C.$\frac{1}{r}$=$\frac{1}{R}$+$\frac{1}{h}$D.$\frac{2}{R}$=$\frac{1}{r}$+$\frac{1}{h}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.函數(shù)f(x)=ex+sinx在(0,f(0))處的切線方程為y=2x+1.

查看答案和解析>>

同步練習冊答案