【題目】如圖,在四棱錐中,底面是正方形,側棱底面,是的中點,求證:
(1)平面 ;
(2).
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)連接AC交BD于O,連接OE,由題意可證得OE∥PA,利用線面平行的判斷定理可得PA∥平面EDB.
(2)由線面垂直的定義可得PD⊥AD,且AD⊥CD,據(jù)此可知AD⊥平面PCD,故AD⊥PC.
(1)連接AC交BD于O,連接OE,
∵底面ABCD是正方形,∴O為AC中點,
∵在△PAC中,E是PC的中點,
∴OE∥PA,
∵OE平面EDB,PA平面EDB,
∴PA∥平面EDB.
(2)∵側棱PD⊥底面ABCD,AD底面ABCD,
∴PD⊥AD,
∵底面ABCD是正方形,
∴AD⊥CD,
又PD∩CD=D,
∴AD⊥平面PCD.
∴AD⊥PC.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在長方體中,點是棱的中點,點 在棱上,且(為實數(shù)).
(1)求二面角的余弦值;
(2)當時,求直線與平面所成角的正弦值的大;
(3)求證:直線與直線不可能垂直.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一支車隊有輛車,某天依次出發(fā)執(zhí)行運輸任務。第一輛車于下午時出發(fā),第二輛車于下午時分出發(fā),第三輛車于下午時分出發(fā),以此類推。假設所有的司機都連續(xù)開車,并都在下午時停下來休息.
到下午時,最后一輛車行駛了多長時間?
如果每輛車的行駛速度都是,這個車隊當天一共行駛了多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),,,記.
(1)求曲線在處的切線方程;
(2)求函數(shù)的單調區(qū)間;
(3)當時,若函數(shù)沒有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線 與雙曲線 的離心率相同,且雙曲線C2的左、右焦點分別為F1 , F2 , M是雙曲線C2一條漸近線上的某一點,且OM⊥MF2 , ,則雙曲線C2的實軸長為( )
A.4
B.
C.8
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一個港口,相鄰兩次高潮發(fā)生時間相距,低潮時水的深度為,高潮時為,一次高潮發(fā)生在10月10日4:00,每天漲潮落潮時,水的深度與時間近似滿足關系式.
(1)若從10月10日0:00開始計算時間,選用一個三角函數(shù)來近似描述該港口的水深和時間之間的函數(shù)關系.
(2)10月10日17:00該港口水深約為多少?(精確到)
(3)10月10日這一天該港口共有多長時間水深低于?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),且直線與曲線交于兩點,以直角坐標系的原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求曲線的極坐標方程;
(2) 已知點的極坐標為,求的值
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com