18.在一次商貿(mào)交易會(huì)上,某商家在柜臺(tái)前開展促銷抽獎(jiǎng)活動(dòng),甲、乙兩人相約同一天上午去該柜臺(tái)參與抽獎(jiǎng).(Ⅰ)若抽獎(jiǎng)規(guī)則是:從一個(gè)裝有2個(gè)紅球和4個(gè)白球的袋中無(wú)放回地取出3個(gè)球,當(dāng)三個(gè)球同色時(shí)則中獎(jiǎng),求中獎(jiǎng)概率;
(Ⅱ)若甲計(jì)劃在9:00~9:40之間趕到,乙計(jì)劃在9:20~10:00之間趕到,求甲比乙提前到達(dá)的概率.

分析 (Ⅰ)記“三個(gè)球同色”為事件A,記兩紅球?yàn)?,2號(hào),四個(gè)白球分別為3,4,5,6號(hào),用列舉法求出基本事件數(shù),計(jì)算對(duì)應(yīng)的概率值;
(Ⅱ)設(shè)甲乙到達(dá)時(shí)間分別為9:00起第x,y小時(shí),則0≤x≤$\frac{2}{3}$,$\frac{1}{3}$≤y≤1,利用幾何概型計(jì)算對(duì)應(yīng)的概率.

解答 解:(Ⅰ)記“三個(gè)球同色”為事件A,記兩紅球?yàn)?,2號(hào),四個(gè)白球分別為3,4,5,6號(hào),
從6個(gè)球中抽取3個(gè)的所有可能情況有:
(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4),(1,3,5),
(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),
(2,3,6),(2,4,5),(2,4,6),(2,5,6),(3,4,5),(3,4,6),
(3,5,6),(4,5,6)共20個(gè)基本事件;
其中事件A包含(3,4,5),(3,4,6),(3,5,6),(4,5,6)共4 種情況;
則中獎(jiǎng)概率為P(A)=$\frac{4}{20}$=$\frac{1}{5}$;
(Ⅱ)設(shè)甲乙到達(dá)時(shí)間分別為9:00起第x,y小時(shí),則0≤x≤$\frac{2}{3}$,$\frac{1}{3}$≤y≤1;
甲乙到達(dá)時(shí)間(x,y)為圖中正方形區(qū)域,
甲比乙先到則需滿足x<y,為圖中陰影部分區(qū)域,
則甲比乙提前到達(dá)的概率為
P(B)=1-$\frac{\frac{1}{2}×\frac{1}{3}×\frac{1}{3}}{\frac{2}{3}×\frac{2}{3}}$=$\frac{7}{8}$.

點(diǎn)評(píng) 本題考查了幾何概型與列舉法求古典概型的概率問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.2015年,威海智慧公交建設(shè)項(xiàng)目已經(jīng)基本完成.為了解市民對(duì)該項(xiàng)目的滿意度,分別從不同公交站點(diǎn)隨機(jī)抽取若干市民對(duì)該項(xiàng)目進(jìn)行評(píng)分(滿分100分),繪制如下頻率分布直方圖,并將分?jǐn)?shù)從低到高分為四個(gè)等級(jí):
滿意度評(píng)分低于60分60分到79分80分到89分不低于90分
滿意度等級(jí)不滿意基本滿意滿意非常滿意
已知滿意度等級(jí)為基本滿意的有680人.
(I)求等級(jí)為非常滿意的人數(shù):
(Ⅱ)現(xiàn)從等級(jí)為不滿意市民中按評(píng)分分層抽取6人了解不滿意的原因,并從中選取3人擔(dān)任整改監(jiān)督員,求3人中恰有1人評(píng)分在[40,50)的概率;
(Ⅲ)相關(guān)部門對(duì)項(xiàng)目進(jìn)行驗(yàn)收,驗(yàn)收的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)驗(yàn)收,并說(shuō)明理由.(注:滿意指數(shù)=$\frac{滿意程度的平均分}{100}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1的離心率e=$\frac{1}{2}$,動(dòng)點(diǎn)P在橢圓C上,點(diǎn)P到橢圓C的兩個(gè)焦點(diǎn)的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=1(m>n>0),橢圓C2的方程為$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過(guò)橢圓C上動(dòng)點(diǎn)P的切線l交橢圓C2于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),試證明當(dāng)切線l變化時(shí)|PA|=|PB|并研究△OAB面積的變化情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知F1,F(xiàn)2分別為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右兩個(gè)焦點(diǎn),橢圓上點(diǎn)M($\frac{1}{2}$,$\frac{3\sqrt{5}}{4}$)到F1、F2兩點(diǎn)的距離之和等于4.
(1)求橢圓C的方程;
(2)已知過(guò)右焦點(diǎn)且垂直于x軸的直線與橢圓交于點(diǎn)N(點(diǎn)N在第一象限),E,F(xiàn)是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果kEN+KFN=0,證明直線EF的斜率為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某旅行社租用A,B兩種型號(hào)的客車安排900名客人旅行,A,B兩種車輛的載客量分別為36人和60人,租金分別為1600元/輛和2400元/輛,旅行社要求租車總數(shù)不超過(guò)21輛,且B型車不多于A型車7輛.則租金最少為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=2$\sqrt{2}$sinxcos(x+$\frac{π}{4}}$).
(Ⅰ) 若在△ABC中,BC=2,AB=$\sqrt{2}$,求使f(A-$\frac{π}{4}$)=0的角B.
(Ⅱ)求f(x)在區(qū)間[${\frac{π}{2}$,$\frac{17π}{24}}$]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.如圖是甲、乙兩名籃球運(yùn)動(dòng)員某賽季一些場(chǎng)次得分的莖葉圖,莖表示得分的十位數(shù),據(jù)圖可知甲運(yùn)動(dòng)員得分的中位數(shù)和乙運(yùn)動(dòng)員得分的眾數(shù)之和為64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.log2$\sqrt{2}$+log2$\frac{\sqrt{2}}{2}$=0;若a=log2$\sqrt{2}$,則2a+2-a=$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)f(x)=|x+$\frac{2}{a}}$|+|x-a|(a≠0).
(1)證明:f(x)≥2$\sqrt{2}$;
(2)如果a>0且f(3)<6,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案