如圖,正六邊形ABCDEF的中心為O,若
AB
=
a
,
AF
=
b
,則
AE
=
 
(用
a
,
b
來表示).
考點:平面向量的基本定理及其意義
專題:平面向量及應(yīng)用
分析:連接AD,則AD經(jīng)過中心O,由正六邊形的性質(zhì)可得:
AB
=
ED
,
AD
=2
FE
.因此
AE
=
AD
+
DE
=2
FE
-
a
AE
=
AF
+
FE
=
b
+
FE
,即可得出
FE
a
,
b
表示.
解答: 解:連接AD,則AD經(jīng)過中心O,
由正六邊形的性質(zhì)可得:
AB
=
ED
,
AD
=2
FE

AE
=
AD
+
DE
=2
FE
-
a
AE
=
AF
+
FE
=
b
+
FE
,
2
FE
-
a
=
b
+
FE
,解得
FE
=
a
+
b

AE
=
a
+2
b

故答案為:
a
+2
b
點評:本題考查了正六邊形的性質(zhì)、向量的三角形法則,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于x的不等式組的整數(shù)解
x2-x-2>0
2x2+(2k+5)x+1-k<0
只有x=-2,則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足a1=2,an+1=pan+2n(n∈N*),其中p為常數(shù).若實數(shù)p使得數(shù)列{an}為等差數(shù)列或等比數(shù)列,數(shù)列{an}的前n項和為Sn,則滿足Sn>2014的最小正整數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=3cos(2x+θ)是奇函數(shù),θ∈(0,π),則θ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠B=60°,O為△ABC的外心,P為劣弧AC上一動點,且
OP
=x
OA
+y
OC
(x,y∈R),則x+y的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一艘船上午9:30在A處測得燈塔S在它的北偏東30°處,之后它繼續(xù)沿正北方向勻速航行,上午10:00到達(dá)B處,且與燈塔S相距8
2
nmile,此船的航速是32nmile/h,則燈塔S對于點B的方向角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)和偶函數(shù)g(x)分別滿足f(x)=
2x-1(0≤x<1)
1
x
(x≥1)
,g(x)=-x2+4x-4(x≥0),若存在實數(shù)a,使得f(a)<g(b)成立,則實數(shù)b的取值范圍是( 。
A、(-1,1)
B、(-
1
3
1
3
C、(-3,-1)∪(1,3)
D、(-∞,-3)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中是偶函數(shù)的是( 。
A、y=x4(x<0)
B、y=|x+1|
C、y=
2
x2
+1
D、y=3x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a+lnx
x
在x=1處取得最大值,g(x)=(x+1)f(x).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)如果當(dāng)x≥1時,判斷函數(shù)g(x)的單調(diào)性,并求出函數(shù)g(x)的最值;
(Ⅲ)求證:[(n+1)!]2>en-2(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案