【題目】1)已知sin(-πθ)+2cos(θ)=0,則

2)已知.

①化簡(jiǎn)f(α);

②若f(α),且,求cos αsin α的值;

③若,求f(α)的值.

【答案】1;(2)①;②;③.

【解析】

1)根據(jù)誘導(dǎo)公式,以及同角三角函數(shù)求得,再求齊次式的值;

2)利用誘導(dǎo)公式化簡(jiǎn)即可得,根據(jù)的關(guān)系即可求得;根據(jù)誘導(dǎo)公式即可求得.

1)由已知得-sin θ2cos θ=0,故tan θ=-2,

.

2)①

②由f(α)=sin α·cos α=可知,

(cos αsin α)2=cos2α2sin α·cos αsin2α

=12sin α·cos α=12×,

又∵,∴cos αsin α,

cos αsin α0,

cos αsin α=.

③∵α=-6×,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中正確命題的個(gè)數(shù)是(

1)若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則為偶函數(shù)的充要條件為對(duì)任意的都成立;

2)若函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱,則為奇函數(shù)的必要條件;

3)函數(shù)對(duì)任意的實(shí)數(shù)都有,則在實(shí)數(shù)集上是增函數(shù);

4)已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn),則實(shí)數(shù)的取值范圍是.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2012年12月18日,作為全國(guó)首批開展空氣質(zhì)量新標(biāo)準(zhǔn)監(jiān)測(cè)的74個(gè)城市之一,鄭州市正式發(fā)布數(shù)據(jù).資料表明,近幾年來(lái),鄭州市霧霾治理取得了很大成效,空氣質(zhì)量與前幾年相比得到了很大改善.鄭州市設(shè)有9個(gè)監(jiān)測(cè)站點(diǎn)監(jiān)測(cè)空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,5,2個(gè)監(jiān)測(cè)站點(diǎn),以9個(gè)站點(diǎn)測(cè)得的的平均值為依據(jù),播報(bào)我市的空氣質(zhì)量.

(Ⅰ)若某日播報(bào)的為118,已知輕度污染區(qū)的平均值為74,中度污染區(qū)的平均值為114,求重度污染區(qū)的平均值;

(Ⅱ)如圖是2018年11月的30天中的分布,11月份僅有一天內(nèi).

組數(shù)

分組

天數(shù)

第一組

3

第二組

4

第三組

4

第四組

6

第五組

5

第六組

4

第七組

3

第八組

1

①鄭州市某中學(xué)利用每周日的時(shí)間進(jìn)行社會(huì)實(shí)踐活動(dòng),以公布的為標(biāo)準(zhǔn),如果小于180,則去進(jìn)行社會(huì)實(shí)踐活動(dòng).以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校周日進(jìn)行社會(huì)實(shí)踐活動(dòng)的概率;

②在“創(chuàng)建文明城市”活動(dòng)中,驗(yàn)收小組把鄭州市的空氣質(zhì)量作為一個(gè)評(píng)價(jià)指標(biāo),從當(dāng)月的空氣質(zhì)量監(jiān)測(cè)數(shù)據(jù)中抽取3天的數(shù)據(jù)進(jìn)行評(píng)價(jià),設(shè)抽取到不小于180的天數(shù)為,的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式ax2bxc>0的解集為{x|2<x<3},求關(guān)于x的不等式cx2bxa<0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,點(diǎn)在橢圓上,橢圓的離心率是.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)點(diǎn)為橢圓長(zhǎng)軸的左端點(diǎn),為橢圓上異于橢圓長(zhǎng)軸端點(diǎn)的兩點(diǎn),記直線斜率分別為,若,請(qǐng)判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求該定點(diǎn)坐標(biāo),若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),,,記.

1)求曲線處的切線方程;

2)求函數(shù)的單調(diào)區(qū)間;

3)當(dāng)時(shí),若函數(shù)沒(méi)有零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是由正整數(shù)組成的無(wú)窮數(shù)列,對(duì)任意,滿足如下兩個(gè)條件:①的倍數(shù);②.

(1)若,,寫出滿足條件的所有的值;

(2)求證:當(dāng)時(shí),;

(3)求所有可能取值中的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn)軸與圓的一個(gè)公共點(diǎn)(異于原點(diǎn)),拋物線的準(zhǔn)線為,上橫坐標(biāo)為的點(diǎn)的距離等于.

(1)求的方程;

(2)直線與圓相切且與相交于,兩點(diǎn),若的面積為4,求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )

A. 的極小值點(diǎn),則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對(duì)稱圖形

D. 的極值點(diǎn),則

查看答案和解析>>

同步練習(xí)冊(cè)答案