A. | 3 | B. | 1 | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
分析 由題設(shè)中的條件,設(shè)兩個(gè)圓錐曲線的焦距為2c,橢圓的長(zhǎng)軸長(zhǎng)2$\sqrt{m}$,雙曲線的實(shí)軸長(zhǎng)為2$\sqrt{n}$,由它們有相同的焦點(diǎn),得到m-n=2.根據(jù)雙曲線和橢圓的定義可得|PF1|+|PF2|=2$\sqrt{m}$,|PF1|-|PF2|=2$\sqrt{n}$,△PF1F2 中,由三邊的關(guān)系得出其為直角三角形,由△PF1F2的面積公式即可運(yùn)算得到結(jié)果.
解答 解:由題意設(shè)兩個(gè)圓錐曲線的焦距為2c,
橢圓的長(zhǎng)軸長(zhǎng)2$\sqrt{m}$,雙曲線的實(shí)軸長(zhǎng)為2$\sqrt{n}$,
由它們有相同的焦點(diǎn),得到m-1=n+1,即m-n=2.
不妨令P在雙曲線的右支上,由雙曲線的定義|PF1|-|PF2|=2$\sqrt{n}$,①
由橢圓的定義|PF1|+|PF2|=2$\sqrt{m}$,②
①2+②2得|PF1|2+|PF2|2=2(m+n),
即有|PF1|•|PF2|=m-n=2,
又|F1F2|=2$\sqrt{m-1}$,
可得|PF1|2+|PF2|2=4(m-1),
|F1F2|2=4(m-1),即|PF1|2+|PF2|2=|F1F2|2,
則△F1PF2的形狀是直角三角形
即有△PF1F2的面積為$\frac{1}{2}$|PF1|•|PF2|=$\frac{1}{2}$×2=1.
故選:B.
點(diǎn)評(píng) 本題考查焦點(diǎn)三角形的面積,注意運(yùn)用橢圓與雙曲線的定義,求焦點(diǎn)三角形三邊的關(guān)系,解決本題的關(guān)鍵是根據(jù)所得出的條件靈活變形,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{10}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com