19.若復(fù)數(shù)z滿足i•z=1+i,則z的共軛復(fù)數(shù)的虛部是( 。
A.iB.1C.-iD.-1

分析 根據(jù)復(fù)數(shù)的運(yùn)算法則,求出z以及z的共軛復(fù)數(shù)$\overline{z}$,寫出$\overline{z}$的虛部即可.

解答 解:復(fù)數(shù)z滿足i•z=1+i,
∴z=$\frac{1+i}{i}$=$\frac{(1+i)i}{{i}^{2}}$=1-i,
∴z的共軛復(fù)數(shù)是$\overline{z}$=1+i,
則$\overline{z}$的虛部是1.
故選:B.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的化簡與運(yùn)算問題,也考查了共軛復(fù)數(shù)的概念,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若非空集合A,B滿足A?B,則“x∈A”是“x∈B”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.等比數(shù)列{an}中,a2-a1=2,且2a2為3a1和a3的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2log3an+1,且數(shù)列{$\frac{1}{_{n}•_{n+1}}$}的前n項(xiàng)和為Tn.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若曲線x2+y2-2x-8y+16=0與曲線x2+y2-6x-4y+12=0關(guān)于直線x+by+c=0對(duì)稱,則bc=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=8x的焦點(diǎn)與雙曲線mx2-$\frac{{y}^{2}}{2}$=1的右焦點(diǎn)重合,則雙曲線的漸近線的方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a2、a13是方程x2-x-3=0的兩個(gè)根,則前14項(xiàng)的和S14為( 。
A.20B.16C.12D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}=(\sqrt{3},1)$,向量$\overrightarrow=(-1,\sqrt{3})$,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角θ為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=cos(2π-x)-x3sinx是(  )
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,AB=AC=1,AA1=2,且P,Q,M分別是BB1,CC1,B1C1的中點(diǎn),AB⊥AQ.
(1)求證:AB⊥AC;
(2)求證:AQ∥平面A1PM;
(3)求AQ與平面BCC1B1所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案