4.在等差數(shù)列{an}中,a2、a13是方程x2-x-3=0的兩個根,則前14項的和S14為( 。
A.20B.16C.12D.7

分析 由韋達定理可得a2+a13=1,a2a13=-3,再由等差數(shù)列的性質(zhì)求和即可.

解答 解:∵a2、a13是方程x2-x-3=0的兩個根,
∴a2+a13=1,a2a13=-3,
∵數(shù)列{an}是等差數(shù)列,
∴前14項的和S14=$\frac{{a}_{1}+{a}_{14}}{2}$•14=$\frac{{a}_{2}+{a}_{13}}{2}$•14=7,
故選D.

點評 本題考查了韋達定理的性質(zhì)的應用及等差數(shù)列的性質(zhì)的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{x^2},x≤a}\\{{{log}_2}({x+1}),x>a}\end{array}}$在區(qū)間(-∞,a]上單調(diào)遞減,在(a,+∞)上單調(diào)遞增,則實數(shù)a的取值范圍是[-1,0].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn=$\frac{1}{7}$(23n+1-2)
(I)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=log2an,求$\frac{1}{_{1}_{2}}$$+\frac{1}{b{{\;}_{2}b}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若曲線x2+y2-2x-8y+16=0與曲線x2+y2-6x-4y+12=0關于直線x+by+c=0對稱,則bc=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若復數(shù)z滿足i•z=1+i,則z的共軛復數(shù)的虛部是( 。
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{\begin{array}{l}{x+1≤0}\\{x-y+2≥0}\\{x+2y+2≥0}\end{array}\right.$且目標函數(shù)z=ax-y取得最大值的點有無數(shù)個,則z的最小值等于( 。
A.-2B.-$\frac{3}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若隨機變量Y~B(5,$\frac{1}{4}$),則EY為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.$\frac{5}{4}$D.-$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,a、b、c分別為∠A、∠B、∠C的對邊,若a=2$\sqrt{3}$,sin$\frac{C}{2}$cos$\frac{C}{2}$=$\frac{1}{4}$,sinBsinC=cos2$\frac{A}{2}$,求∠A、∠B及b、c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在△ABC中,已知O為邊BC的中點,∠A0B=60°,AB=10.
(1)當OA=4$\sqrt{3}$時,求△ABC的面積;
(2)設AC=x,求x的取值范圍.

查看答案和解析>>

同步練習冊答案