分析 (Ⅰ)由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的解析式.
(Ⅱ)利用正弦函數(shù)的圖象的對稱性,求得函數(shù)的對稱軸方程和對稱中心坐標(biāo).
解答 解:(Ⅰ)由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π) 的部分圖象,
可得A=2,$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{5π}{12}$+$\frac{π}{12}$,∴ω=2.
再根據(jù)五點法作圖可得2•(-$\frac{π}{12}$)+φ=$\frac{π}{2}$,∴φ=$\frac{2π}{3}$,函數(shù)f(x)=2sin(2x+$\frac{2π}{3}$).
(Ⅱ) 由2x+$\frac{2π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$-$\frac{π}{12}$,可得函數(shù)的圖象的對稱軸方程為x=$\frac{kπ}{2}$-$\frac{π}{12}$,k∈Z.
令2x+$\frac{2π}{3}$=kπ,求得x=$\frac{kπ}{2}$-$\frac{π}{3}$,可得函數(shù)的圖象的對稱軸中心為($\frac{kπ}{2}$-$\frac{π}{3}$,0),k∈Z.
點評 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的最值求出A,由周期求出ω,由五點法作圖求出φ的值;正弦函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{27}{13}$ | C. | $\frac{9}{19}$ | D. | $\frac{9}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$+$\frac{1}{2}$i | B. | -$\frac{1}{2}$+$\frac{1}{2}$i | C. | $\frac{1}{2}$-$\frac{1}{2}$i | D. | -$\frac{1}{2}$-$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 順時針旋轉(zhuǎn)60°所得 | B. | 順時針旋轉(zhuǎn)120°所得 | ||
C. | 逆時針旋轉(zhuǎn)60°所得 | D. | 逆時針旋轉(zhuǎn)120°所得 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{3}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com