(2013·宿州模擬)如果實數(shù)x,y滿足條件那么2x-y的最大值為

(  )

A.2 B.1 C.-2 D.-3

 

B

【解析】先根據(jù)約束條件畫出可行域:

當(dāng)直線2x-y=t過點A(0,-1)時,t取得最大值1,故答案為B.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:選擇題

設(shè)f(x)是定義在實數(shù)集R上的函數(shù),滿足條件y=f(x+1)是偶函數(shù),且當(dāng)x≥1時,f(x)=()x-1,則f(),f(),f()的大小關(guān)系是 (  )

A.f()>f()>f()

B.f()>f()>f()

C.f()>f()>f()

D.f()>f()>f()

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第十章 算法初步、統(tǒng)計、統(tǒng)計案例(解析版) 題型:填空題

(2014·天門模擬)在區(qū)間[0,4]內(nèi)隨機取兩個數(shù)a,b,則使得函數(shù)f(x)=x2+ax+b2有零點的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:填空題

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.有同學(xué)發(fā)現(xiàn)“任何一個三次函數(shù)都有′拐點′;任何一個三次函數(shù)都有對稱中心,且‘拐點’就是對稱中心”.請你將這一發(fā)現(xiàn)作為條件,則函數(shù)f(x)=x3-3x2+3x的對稱中心為__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:選擇題

(2013·隨州模擬)變量x,y滿足約束條件則目標(biāo)函數(shù)z=3|x|+|y-3|的取值范圍是(  )

A. B. C.[-2,3] D.[1,6]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第八章 平面解析幾何(解析版) 題型:解答題

(2013·上海高考)如圖,已知雙曲線C1:-y2=1,曲線C2:|y|=|x|+1.P是平面內(nèi)一點.若存在過點P的直線與C1,C2都有共同點,則稱P為“C1-C2型點”.

(1)在正確證明C1的左焦點是“C1-C2型點”時,要使用一條過該焦點的直線,試寫出一條這樣的直線的方程(不要求驗證).

(2)設(shè)直線y=kx與C2有公共點,求證|k|>1,進而證明原點不是“C1-C2型點”.

(3)求證:圓x2+y2=內(nèi)的點都不是“C1-C2型點”.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第八章 平面解析幾何(解析版) 題型:填空題

(2014·武漢模擬)圓(x-a)2+y2=1與雙曲線x2-y2=1的漸近線相切,則a的值是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第五章 數(shù)列(解析版) 題型:解答題

已知數(shù)列{an}為等差數(shù)列,a3=5,a7=13,數(shù)列{bn}的前n項和為Sn,且有Sn=2bn-1,

(1)求{an},{bn}的通項公式.

(2)若cn=anbn,{cn}的前n項和為Tn,求Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:選擇題

(2014·荊州模擬)函數(shù)y=ln(2-x-x2)+的定義域是(  )

A.(-1,2) B.(-∞,-2)∪(1,+∞)

C.(-2,1) D.[-2,1)

 

查看答案和解析>>

同步練習(xí)冊答案