【題目】已知函數(shù)的圖像與軸的相鄰兩交點的坐標(biāo)分別為,,且當(dāng)時,有最小值.
(1)求函數(shù)的解析式及單調(diào)遞減區(qū)間;
(2)將的圖像向右平移個單位,再將所得圖像的橫坐標(biāo)伸長為原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖像,若關(guān)于的方程在區(qū)間上有兩個解,求的取值范圍.
【答案】(1),;(2)或
【解析】
(1)由題意可知,可求得,又,可求,可得,再根據(jù)余弦函數(shù)的單調(diào)性,即可求出函數(shù)的單調(diào)遞減區(qū)間;
(2)根據(jù)圖像平移可得,函數(shù),因為在上有兩個解,所以與在上有兩個交點,據(jù)此列出不等式,即可求出結(jié)果.
(1)由題得,∴.
所以,∵,
又,∴.
所以.
令,∴,,
所以函數(shù)的單調(diào)遞減區(qū)間為,.
(2)將的圖像向右平移個單位得到,再將橫坐標(biāo)伸長為原來的倍,得到函數(shù),
因為在上有兩個解,所以與在上有兩個交點,
因為,所以或,
所以的取值范圍為或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究某學(xué)科成績是否與學(xué)生性別有關(guān),采用分層抽樣的方法,從高三年級抽取了30名男生和20名女生的該學(xué)科成績,得到如下所示男生成績的頻率分布直方圖和女生成績的莖葉圖,規(guī)定80分以上為優(yōu)分(含80分).
(Ⅰ)(i)請根據(jù)圖示,將2×2列聯(lián)表補(bǔ)充完整;
優(yōu)分 | 非優(yōu)分 | 總計 | |
男生 | |||
女生 | |||
總計 | 50 |
(ii)據(jù)此列聯(lián)表判斷,能否在犯錯誤概率不超過10%的前提下認(rèn)為“該學(xué)科成績與性別有關(guān)”?
(Ⅱ)將頻率視作概率,從高三年級該學(xué)科成績中任意抽取3名學(xué)生的成績,求至少2名學(xué)生的成績?yōu)閮?yōu)分的概率.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,把滿足條件的所有數(shù)列構(gòu)成的集合記為.
(1)若數(shù)列通項為,求證:;
(2)若數(shù)列是等差數(shù)列,且,求的取值范圍;
(3)若數(shù)列的各項均為正數(shù),且,數(shù)列中是否存在無窮多項依次成等差數(shù)列,若存在,給出一個數(shù)列的通項;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時間與每天獲得的利潤(單位:萬元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤 | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)估計星期日獲得的利潤為多少萬元.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點是拋物線:的焦點,動直線過點且與拋物線相交于,兩點.當(dāng)直線變化時,的最小值為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點,分別作拋物線的切線,,與相交于點,,與軸分別交于點,,求證:與的面積之比為定值(為坐標(biāo)原點).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.
(1)求證:平面平面BCM;
(2)當(dāng)四棱錐的體積最大時,求AM與CD所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個圓內(nèi)有6000個點,其中任三點都不共線;①能否把這個圓分成2000塊,使每塊恰含有三個點,如何分?②若每塊中三點滿足:兩兩間的距離皆為整數(shù)且不超過9,則以每塊中的三點為頂點作三角形,這些三角形中大小完全一樣的三角形至少有多少個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種工業(yè)機(jī)器生產(chǎn)商,對一次性購買2臺機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:
方案一:交納延保金700元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)200元;
方案二:交納延保金1000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)100元.
某工廠準(zhǔn)備一次性購買2臺這種機(jī)器.現(xiàn)需決策在購買機(jī)器時應(yīng)購買哪種延保方案,為此搜集并整理了50臺這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:
維修次數(shù) | 0 | 1 | 2 | 3 |
臺數(shù) | 5 | 20 | 10 | 15 |
以這50臺機(jī)器維修次數(shù)的頻率代替1臺機(jī)器維修次數(shù)發(fā)生的概率.記X表示這2臺機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù).
(1)求X的分布列;
(2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),工廠選擇哪種延保方案更合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com