【題目】已知函數(shù),.
(Ⅰ)若,求曲線在處的切線方程;
(Ⅱ)探究函數(shù)的極值點情況,并說明理由.
【答案】(1)(2)見解析
【解析】試題分析:(1)先求函數(shù)導數(shù),根據(jù)導數(shù)幾何意義得切線斜率,再根據(jù)點斜式寫出切線方程(2)先求導數(shù),轉(zhuǎn)化研究函數(shù),利用導數(shù)易得先減后增,討論與兩個端點值以及最小值點大小關(guān)系,確定極值點情況.
試題解析:解:(Ⅰ)依題意,故,
因為,故所求切線方程為,即.
(Ⅱ),,
記,則 ,.
當時,,當時,,所以當時,取得極小值,
又,,.
(i)當,即時,恒成立,函數(shù)在區(qū)間上無極值點;
(ii)當,即時,有兩不同解,函數(shù)在上有兩個極值點;
(iii)當,即時,有一解,函數(shù)在區(qū)間上有一個極值點;
(iv)當,即時,,函數(shù)在區(qū)間上無極值點.
科目:高中數(shù)學 來源: 題型:
【題目】(1)若函數(shù)的圖象在處的切線垂直于直線,求實數(shù)的值及直線的方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,對任意的正整數(shù)n,都有Sn=an+n﹣3成立.
(Ⅰ)求證:{an﹣1}為等比數(shù)列;
(Ⅱ)求數(shù)列{nan}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班20名同學某次數(shù)學測試的成績可繪制成如下莖葉圖,由于其中部分數(shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計全班同學的平均成績.
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計全班同學的平均成績 (同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(3)設(shè)根據(jù)莖葉圖計算出的全班的平均成績?yōu)?/span>,并假設(shè),且各自取得每一個可能值的機會相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點處的切線;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差(°C) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是邊長2的正方形,E,F(xiàn)分別為線段DD1 , BD的中點.
(1)求證:EF∥平面ABC1D1;
(2)AA1=2 ,求異面直線EF與BC所成的角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】北京市的士收費辦法如下:不超過2公里收7元(即起步價7元),超過2公里的里程每公里收2.6元,另每車次超過2公里收燃油附加費1元(不考慮其他因素).相應(yīng)收費系統(tǒng)的流程圖如圖所示,則①處應(yīng)填( )
A.y=7+2.6x
B.y=8+2.6x
C.y=7+2.6(x﹣2)
D.y=8+2.6(x﹣2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家舉行大型的促銷活動,經(jīng)測算某產(chǎn)品當促銷費用為萬元時,銷售量萬件滿足(其中, 為正常數(shù)),現(xiàn)假定生產(chǎn)量與銷售量相等,已知生產(chǎn)該產(chǎn)品萬件還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為萬元/萬件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com