【題目】已知拋物線C:y2=2px(p>0)的焦點(diǎn)F,直線y=4與y軸的交點(diǎn)為P,與拋物線C的交點(diǎn)為Q,且|QF|=2|PQ|.
(1)求p的值;
(2)已知點(diǎn)T(t,-2)為C上一點(diǎn),M,N是C上異于點(diǎn)T的兩點(diǎn),且滿足直線TM和直線TN的斜率之和為,證明直線MN恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
【答案】(1)p=4 (2)證明見解析,定點(diǎn)坐標(biāo):(-1,-1)
【解析】
(1)設(shè)Q(x0,4),由拋物線定義,根據(jù)|QF|=x0+,解得x0=,將點(diǎn)Q代入拋物線方程,即可求解;
(2)設(shè)直線MN的方程為x=my+n,代入拋物線的方程,代入y1+y2,y1y2,結(jié)合斜率公式,求得n=m-1,代入直線方程,即可求解.
(1)設(shè)Q(x0,4),由拋物線定義,|QF|=x0+,
又|QF|=2|PQ|,即2x0=x0+,解得x0=,
將點(diǎn)Q代入拋物線方程,解得p=4.
(2)由(1)知C的方程為y2=8x,所以點(diǎn)T坐標(biāo)為,
設(shè)直線MN的方程為x=my+n,點(diǎn)M,N,
由得y2-8my-8n=0,所以y1+y2=8m,y1y2=-8n,
所以kMT+kNT=+=+
===-,
解得n=m-1,所以直線MN方程為x+1=m(y+1),
此時直線恒過點(diǎn)(-1,-1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將編號為1、2、3、4的四個小球隨機(jī)的放入編號為1、2、3、4的四個紙箱中,每個紙箱有且只有一個小球,稱此為一輪“放球”.設(shè)一輪“放球”后編號為的紙箱放入的小球編號為,定義吻合度誤差為
(1) 寫出吻合度誤差的可能值集合;
(2) 假設(shè)等可能地為1,2,3,4的各種排列,求吻合度誤差的分布列;
(3)某人連續(xù)進(jìn)行了四輪“放球”,若都滿足,試按(Ⅱ)中的結(jié)果,計算出現(xiàn)這種現(xiàn)象的概率(假定各輪“放球”相互獨(dú)立);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,e是自然對數(shù)的底,)
(1)討論的單調(diào)性;
(2)若,是函數(shù)的零點(diǎn),是的導(dǎo)函數(shù),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,曲線C由部分橢圓C1:+=1(a>b>0,y≥0)和部分拋物線C2:y=-x2+1(y≤0)連接而成,C1與C2的公共點(diǎn)為A,B,其中C1所在橢圓的離心率為.
(1)求a,b的值;
(2)過點(diǎn)B的直線l與C1,C2分別交于點(diǎn)P,Q(P,Q,A,B中任意兩點(diǎn)均不重合),若AP⊥AQ,求直線l
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知項數(shù)為項的有窮數(shù)列,若同時滿足以下三個條件:
,為正整數(shù);或1,其中,3,,;
任取數(shù)列中的兩項,,剩下的項中一定存在兩項,,滿足,則稱數(shù)列為數(shù)列.
若數(shù)列是首項為1,公差為1,項數(shù)為6項的等差數(shù)列,判斷數(shù)列是否是數(shù)列,并說明理由.
當(dāng)時,設(shè)數(shù)列中1出現(xiàn)次,2出現(xiàn)次,3出現(xiàn)次,其中,,.
求證:,,;
當(dāng)時,求數(shù)列中項數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,居民小區(qū)要建一座八邊形的休閑場所,它的主體造型平面圖是由兩個相同的矩形和構(gòu)成的面積為的十字形地域,計劃在正方形上建一座花壇,造價為元/;在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價為元/;再在四個空角(圖中四個三角形,如)上鋪草坪,造價為元/
(1)設(shè)總造價為(單位:元),長為(單位:),試求出關(guān)于的函數(shù)關(guān)系式,并求出定義域;
(2)當(dāng)長取何值時,總造價最小,并求出這個最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為:為參數(shù),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線l的極坐標(biāo)方程為,.
將圓C的參數(shù)方程化為極坐標(biāo)方程;
設(shè)點(diǎn)A的直角坐標(biāo)為,射線l與圓C交于點(diǎn)不同于點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的焦距為,短半軸的長為2,過點(diǎn)P(-2,1)且斜率為1的直線l與橢圓C交于A,B兩點(diǎn).
(1)求橢圓C的方程;
(2)求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為空間中三條互相平行且兩兩間的距離分別為4、5、6的直線,給出下列三個結(jié)論:
①存在使得是直角三角形;
②存在使得是等邊三角形;
③三條直線上存在四點(diǎn)使得四面體為在一個頂點(diǎn)處的三條棱兩兩互相垂直的四面體,其中,所有正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com