【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)若函數(shù)的最大值是,求的值;
(3)已知,若存在兩個(gè)不同的正數(shù),當(dāng)函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.
【答案】(1) (2)(3)
【解析】
(1)時(shí)寫出函數(shù)表達(dá)式,根據(jù)真數(shù)范圍求解函數(shù)值域即可。(2)設(shè)換元真數(shù)部分為關(guān)于的一元二次函數(shù),又有最大值,所以開口只能向下,即,在對稱軸處取得最大值,即可求出的范圍。(3)較易判斷為增函數(shù),函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>可理解為函數(shù)與有兩個(gè)交點(diǎn)正數(shù)交點(diǎn),,另外將進(jìn)行換元即可轉(zhuǎn)化成關(guān)于的一個(gè)一元二次函數(shù)求解。
(1)時(shí),
因?yàn)?/span>,所以
所以此時(shí)的值域是。
(2)設(shè),則,若此時(shí),開口向上沒有最大值。由第一問可知)時(shí)也不滿足,所以開口只能向下,即且此時(shí)對稱軸。
當(dāng)時(shí),最大值在對稱軸處取得,
即
解出 或(舍)
所以。
(3)當(dāng)時(shí),設(shè),設(shè)真數(shù)為,此時(shí)對稱軸,所以當(dāng)時(shí)m為增函數(shù),即為增函數(shù)。
所以函數(shù)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,可理解為函數(shù)與有兩個(gè)交點(diǎn)正數(shù)交點(diǎn),,
即有兩個(gè)正根。
即,設(shè)
所以
即有兩個(gè)大于1的根。
所以此時(shí)只需即可,即
又,所以。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)當(dāng)p=1時(shí),若拋物線C上存在關(guān)于直線l對稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若函數(shù)在上單調(diào)遞減,試求的取值范圍;
(Ⅲ)若函數(shù)的最小值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題,其中真命題的個(gè)數(shù)是( )
①若“或”是假命題,則“且”是真命題;
②命題“若,則或”為真命題;
③已知空間任意一點(diǎn)和不共線的三點(diǎn),,,若,則,,,四點(diǎn)共面;
④直線與雙曲線交于,兩點(diǎn),若,則這樣的直線有3條;
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:
初一年級 | 初二年級 | 初三年級 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.
求x的值;
現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名?
已知y245,z245,求初三年級中女生比男生多的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線,則下列結(jié)論正確的是( )
A.直線的傾斜角是B.若直線則
C.點(diǎn)到直線的距離是D.過與直線平行的直線方程是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】漢字聽寫大會(huì)不斷創(chuàng)收視新高,為了避免“書寫危機(jī)”,弘揚(yáng)傳統(tǒng)文化,某市大約10萬名市民進(jìn)行了漢字聽寫測試現(xiàn)從某社區(qū)居民中隨機(jī)抽取50名市民的聽寫測試情況,發(fā)現(xiàn)被測試市民正確書寫漢字的個(gè)數(shù)全部在160到184之間,將測試結(jié)果按如下方式分成六組:第1組,第2組,,第6組,如圖是按上述分組方法得到的頻率分布直方圖.
若電視臺(tái)記者要從抽取的市民中選1人進(jìn)行采訪,求被采訪人恰好在第2組或第6組的概率;
試估計(jì)該市市民正確書寫漢字的個(gè)數(shù)的平均數(shù)與中位數(shù);
已知第4組市民中有3名男性,組織方要從第4組中隨機(jī)抽取2名市民組成弘揚(yáng)傳統(tǒng)文化宣傳隊(duì),求至少有1名女性市民的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.
其中.
(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說明理由)
(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;
(3)已知時(shí)段投入成本與的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?
附:①對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com