已知數(shù)列{an}(n∈N*)中的前8項是一個以2為公比,以
1
4
為首項的等比數(shù)列,從第8項起是一個等差數(shù)列,公差為-3,求:
(1)數(shù)列{an}的通項公式;
(2)數(shù)列{an}的前n項和Sn的公式;
(3)當n為何值時,Sn<0.
考點:等差數(shù)列的性質(zhì),等比數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:(1)利用數(shù)列{an}(n∈N*)中的前8項是一個以2為公比,以
1
4
為首項的等比數(shù)列,從第8項起是一個等差數(shù)列,公差為-3,可得1≤n≤8時,an=2n-3;n≥9時,an=32+(n-8)×(-3)=-3n+56;
(2)分段求和,即可求出數(shù)列{an}的前n項和Sn的公式;
(3)當n為何值時,Sn<0;
(3)由Sn<0,可得
27-1
4
+(n-7)×32+
(n-7)(n-8)
2
×(-3)
<0,即可得出結(jié)論.
解答: 解:(1)∵數(shù)列{an}(n∈N*)中的前8項是一個以2為公比,以
1
4
為首項的等比數(shù)列,從第8項起是一個等差數(shù)列,公差為-3,
∴1≤n≤8時,an=2n-3;n≥9時,an=32+(n-8)×(-3)=-3n+56,
∴an=
2n-3,1≤n≤8
-3n+56,n≥9
(n∈N*);
(2)1≤n≤8時,Sn=
2n-1
4
;n≥9時,Sn=
27-1
4
+(n-7)×32+
(n-7)(n-8)
2
×(-3)

(3)由Sn<0,可得
27-1
4
+(n-7)×32+
(n-7)(n-8)
2
×(-3)
<0,解得n≥27.
點評:本題考查等差數(shù)列、等比數(shù)列的性質(zhì),考查數(shù)列的求和,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某學校一個生物興趣小組對學校的人工湖中養(yǎng)殖的某種魚類進行觀測研究,在飼料充足的前提下,興趣小組對飼養(yǎng)時間x(單位:月)與這種魚類的平均體重y(單位:千克)得到一組觀測值,如下表:
xi(月)12345
yi(千克)0.50.91.72.12.8
(1)在給出的坐標系中,畫出關(guān)于x,y兩個相關(guān)變量的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出變量y關(guān)于變量x的線性回歸直線方程
?
y
=
b
x+
?
a

(3)預測飼養(yǎng)滿12個月時,這種魚的平均體重(單位:千克)
(參考公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
?
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求過點A(-1,3),B(4,2),且在x軸、y軸上的四個截距之和是4的圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓C1:x2+y2+2x+2y-2=0與圓C2:x2+y2-6x+2y+6=0的公切線有且只有
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由直線2x+y-4=0上任意一點向圓(x+1)2+(y-1)2=1引切線,則切線長的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

廊坊市某所中學有一塊矩形空地,學校要在這塊空地上修建一個內(nèi)接四邊形的花壇(如圖所示),該花壇的四個頂點分別落在矩形的四條邊上,已知 A B=a(a>2),BC=2,且 A E=A H=CF=CG,設(shè) A E=x,花壇面積為y.
(1)寫出y關(guān)于x的函數(shù)關(guān)系式,并指出這個函數(shù)的定義域;
(2)當 A E為何值時,花壇面積y最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足
x+y-2≥0
x+2y-4≤0
y≥0
,則z=2x+y的最小值是(  )
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x,y滿足
|x-1|≤1
y≥0
y≤x+1
時,則t=x+y的最大值是( 。
A、1B、2C、6D、5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),且當x∈[0,1]時,r(x)=2x-1,則f(7)的值是
 

查看答案和解析>>

同步練習冊答案