由直線2x+y-4=0上任意一點(diǎn)向圓(x+1)2+(y-1)2=1引切線,則切線長(zhǎng)的最小值為
 
考點(diǎn):圓的切線方程
專題:直線與圓
分析:利用切線和點(diǎn)到圓心的距離關(guān)系即可得到結(jié)論.
解答: 解:圓心坐標(biāo)C(-1,1),半徑R=1,
要使切線長(zhǎng)|DA|最小,則只需要點(diǎn)D到圓心的距離最小,
此時(shí)最小值為圓心C到直線的距離d=
|-2+1-4|
22+1
=
5
5
=
5
,
此時(shí)|DA|=
d2-R2
=
5-1
=
4
=2

故答案為:2
點(diǎn)評(píng):本題考查切線長(zhǎng)的最小值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線的距離公式的合理運(yùn)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合,點(diǎn)A是兩曲線的一個(gè)交點(diǎn),且AF⊥x軸,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M與圓C:(x-2)2+(y+1)2=4外切于點(diǎn)(4,-1),且圓M的半徑為1,則圓M的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向如圖中邊長(zhǎng)為2的正方形中,隨機(jī)撒一粒黃豆,則黃豆落在圖中陰影部分的概率為( 。
A、
1+2ln2
4
B、
ln2
2
C、
2+ln2
4
D、
2-ln2
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若⊙C:x2+y2+2ax+a2-4=0(a∈R)與⊙D:x2+y2-2by-1+b2=0(b∈R)外切,則
b-4
a-3
范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}(n∈N*)中的前8項(xiàng)是一個(gè)以2為公比,以
1
4
為首項(xiàng)的等比數(shù)列,從第8項(xiàng)起是一個(gè)等差數(shù)列,公差為-3,求:
(1)數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{an}的前n項(xiàng)和Sn的公式;
(3)當(dāng)n為何值時(shí),Sn<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=4x+3×2x+3,當(dāng)其值域?yàn)閇1,7]時(shí),求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程9x+a•3x=0有實(shí)根,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sinx與y=x的交點(diǎn)個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案