17.(1+2x)6的展開式中二項式系數(shù)最大的項是( 。
A.160x3B.120x2C.80x4D.20x6

分析 利用二項式系數(shù)的性質(zhì),二項展開式的通項公式,求得(1+2x)6的展開式中二項式系數(shù)最大的項.

解答 解:根據(jù)二項式系數(shù)的性質(zhì),當(dāng)n為偶數(shù)時,只有中間一項,即第$\frac{n}{2}+1$項的二項式系數(shù)最大,
故(1+2x)6的展開式中二項式系數(shù)最大的項是第4項,即T4=${C}_{6}^{3}$•(2x)3=160x3,
故選:A.

點評 本題主要考查二項式系數(shù)的性質(zhì),二項展開式的通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在數(shù)列{an}中,an+1-an=2,a15=-10,則a1=(  )
A.38B.-38C.18D.-18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示,小圓圈表示網(wǎng)絡(luò)的結(jié)點,結(jié)點之間的連線表示它們有網(wǎng)線相連,連線標注的數(shù)字表示該段網(wǎng)線單位時間內(nèi)可以通過的最大信息量.現(xiàn)從結(jié)點B向結(jié)點A傳遞信息,信息可以分開沿不同的路線同時傳遞,則一次性傳遞的最大信息量為(  )
A.26B.24C.20D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知圓O:(x-1)2+(y+2)2=4上有三點A,B,C,點P(1,0)滿足|PA|=|PA1|,|PB|=|PB1|,|PC|=|PC1|,則△A1B1C1的外接圓的方程為(x-1)2+y2=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=2sin(x-$\frac{π}{4}$)的一條對稱軸是( 。
A.x=$\frac{π}{4}$B.x=$\frac{π}{2}$C.x=$\frac{3π}{4}$D.x=2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點與拋物線y2=12x的焦點重合,雙曲線的離心率等于$\frac{3}{2}$,則該雙曲線的焦點到其漸近線的距離等于( 。
A.$\sqrt{5}$B.4$\sqrt{2}$C.3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知隨機變量X的分布列為P(X=i)=$\frac{i}{3a}$(i=1,2,3,4,5),則P(1<X<4)等于( 。
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{5}{3a}$D.$\frac{9}{3a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知定義在R上函數(shù)f(x)滿足f(2)=1,且f(x)的導(dǎo)函數(shù)f′(x)<-2,則不等式f(lnx)>5-2lnx的解集為(0,e2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某校高二學(xué)生參加社會實踐活動,分乘3輛不同的巴士,共有5名帶隊教師,要求每車至少有一名帶隊教師,則不同的分配方案有( 。
A.90種B.150種C.180種D.240種

查看答案和解析>>

同步練習(xí)冊答案