16.如圖,在三棱柱ABC-A1B1C1中,面ABB1A1為矩形,AB=BC=1,AA1=$\sqrt{2}$,D為AA1的中點,BD與AB1交于點O,BC⊥AB1
(Ⅰ)證明:CD⊥AB1
(Ⅱ)若OC=$\frac{\sqrt{3}}{3}$,求BC與平面ACD所成角的正弦值.

分析 (Ⅰ)由$\frac{AB}{AD}$=$\frac{B{B}_{1}}{AB}$=$\sqrt{2}$,可知:Rt△BAD∽Rt△ABB1,可得出BD⊥AB1,根據(jù)CO⊥平面ABB1A1得出CO⊥AB1,于是AB1⊥平面BCD,從而得出CD⊥AB1;
(Ⅱ)由題意可知:CO⊥平面AOB,分別以O(shè)D,OB1,OC所在的直線為x,y,z軸,以O(shè)為原點,建立空間直角坐標(biāo)系,求得平面ADC的法向量為n,求得$\overrightarrow{BC}$,利用向量的夾角公式,即可得出結(jié)論.

解答 解:(Ⅰ)證明:由已知得,$\frac{AB}{AD}$=$\frac{B{B}_{1}}{AB}$=$\sqrt{2}$,
∴Rt△BAD∽Rt△ABB1
∴∠BDA=∠B1AB,∴∠ABD+∠B1AB=∠ABD+∠BDA=90°
∴在△AOB中,∠AOB=180°-(∠ABO+∠OAB )=90°,即BD⊥AB1…4分
另BC⊥AB1,BD∩BC=B,
∴AB1⊥平面BCD,CD?平面BCD,
∴CD⊥AB1 …6分
(Ⅱ) 在Rt△ABD中,AB=1,AD=$\frac{\sqrt{2}}{2}$,
∴AO=$\frac{\sqrt{3}}{3}$
在Rt△AOB中,得BO=$\frac{\sqrt{6}}{3}$,
∴BO2+CO2=BC2,即BO⊥CO,
∴CO⊥平面AOB----8分

建立如圖坐標(biāo)系,設(shè)BC與平面ACD所成的角為θ,
∵$A(\frac{{\sqrt{3}}}{3},0,0),B(0,-\frac{{\sqrt{6}}}{3},0),C(0,0,\frac{{\sqrt{3}}}{3}),D(0,\frac{{\sqrt{3}}}{3},0)$,
設(shè)平面ADC的法向量為n.解得n=(1,1,1).
$\overrightarrow{BC}=({0,\frac{{\sqrt{6}}}{3},\frac{{\sqrt{3}}}{3}})$,
∴$sinθ=\frac{{\overrightarrow n•\overrightarrow{BC}}}{{|{\overrightarrow n}||{\overrightarrow{BC}}|}}=\frac{{\sqrt{2}+1}}{3}$,
即BC與平面ACD所成角的正弦值為$\frac{{\sqrt{2}+1}}{3}$.12分.

點評 本題考查了線面垂直的判定與性質(zhì),空間向量的應(yīng)用與線面角的夾角公式,考查向量方法的運用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如果X~B(20,$\frac{1}{2}$),則P(X=k)取最大值時,k=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow a$與$\overrightarrow b$滿足|$\overrightarrow a$|=|$\overrightarrow b$|=2,且$\overrightarrow b$⊥(2$\overrightarrow a$+$\overrightarrow b}$),則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(sinx)=cos2x,那么f($\frac{1}{2}$)的值為(  )
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.復(fù)數(shù)z滿足$\frac{z}{1-z}$=2i,則z平面內(nèi)對應(yīng)的點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.某幾何體的三視圖如圖所示,則該幾何體是( 。
A.棱柱B.圓柱C.棱錐D.圓錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.趙州橋是當(dāng)今世界上建造最早、保存最完整的我國古代單孔敞肩石拱橋(圖一).若以趙州橋跨徑AB所在直線為x軸,橋的拱高OP所在直線為y軸,建立平面直角坐標(biāo)系(圖二),有橋的圓拱APB所在的圓的方程為x2+(y+20.7)2=27.92.求|OP|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖
(I)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請用相關(guān)系數(shù)加以說明;
(II)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{u}-\overline{y})^{2}}}$,$\sum_{i=1}^{n}$(ti-$\overline{t}$)(yi-$\overline{y}$)=$\sum_{i=1}^{n}$tiyi-$\overline{y}$•$\sum_{i=1}^{n}$ti-$\overline{t}$•$\sum_{i=1}^{n}$yi+n$\overline{t}$•$\overline{y}$.
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t 中斜率和截距的最小二乘估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{u}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)正項等比數(shù)列{an}的前n項和為Sn,且$\frac{{{a_{n+1}}}}{a_n}$<1,若a3+a5=20,a3a5=64,則S4=( 。
A.63或126B.252C.120D.63

查看答案和解析>>

同步練習(xí)冊答案