A. | 63或126 | B. | 252 | C. | 120 | D. | 63 |
分析 根據(jù)a3+a5=20,a3a5=64構造出一元二次方程求得a3和a5,則a1和q可求得,最后求得答案.
解答 解:∵$\frac{{{a_{n+1}}}}{a_n}$<1,
∴0<q<1,
∵a3a5=64,a3+a5=20,
∴a3和a5為方程x2-20x+64=0的兩根,
∵an>0,0<q<1,
∴a3>a5,
∴a3=16,a5=4,
∴q=$\frac{1}{2}$,
∴a1=64,a2=32,a3=16,a4=8,
∴S4=a1+a2+a3+a4=64+32+16+8=120,
故選:C
點評 本題考查等比數(shù)列的求和公式,涉及等比數(shù)列的性質(zhì)和韋達定理,是基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
語文 | ||||
優(yōu) | 良 | 及格 | ||
數(shù)學 | 優(yōu) | 8 | m | 9 |
良 | 9 | n | 11 | |
及格 | 8 | 9 | 11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{(4e-1)\sqrt{2}}{2}$ | B. | $\frac{(4e+1)\sqrt{2}}{2}$ | C. | $\frac{3\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com