6.設正項等比數(shù)列{an}的前n項和為Sn,且$\frac{{{a_{n+1}}}}{a_n}$<1,若a3+a5=20,a3a5=64,則S4=( 。
A.63或126B.252C.120D.63

分析 根據(jù)a3+a5=20,a3a5=64構造出一元二次方程求得a3和a5,則a1和q可求得,最后求得答案.

解答 解:∵$\frac{{{a_{n+1}}}}{a_n}$<1,
∴0<q<1,
∵a3a5=64,a3+a5=20,
∴a3和a5為方程x2-20x+64=0的兩根,
∵an>0,0<q<1,
∴a3>a5,
∴a3=16,a5=4,
∴q=$\frac{1}{2}$,
∴a1=64,a2=32,a3=16,a4=8,
∴S4=a1+a2+a3+a4=64+32+16+8=120,
故選:C

點評 本題考查等比數(shù)列的求和公式,涉及等比數(shù)列的性質(zhì)和韋達定理,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,在三棱柱ABC-A1B1C1中,面ABB1A1為矩形,AB=BC=1,AA1=$\sqrt{2}$,D為AA1的中點,BD與AB1交于點O,BC⊥AB1
(Ⅰ)證明:CD⊥AB1
(Ⅱ)若OC=$\frac{\sqrt{3}}{3}$,求BC與平面ACD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)y=f(x)的圖象與函數(shù)y=2x+a的圖象關于直線y=-x對稱,且f(-4)+f(-8)=1,則a=3 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某校高三文科500名學生參加了1月份的模擬考試,學校為了了解高三文科學生的數(shù)學、語文情況,利用隨機數(shù)表法從中抽取100名學生的成績進行統(tǒng)計分析,抽出的100名學生的數(shù)學、語文成績?nèi)绫恚?br />
  語文
 
優(yōu)
 良 及格
 數(shù)學 優(yōu) 8 m 9
 良 9 n 11
 及格 8 9 11
(1)將學生編號為:001,002,003,…499,500,若從第5行第5列的數(shù)開始右讀,請你依次寫出最先抽出的 5個人的編號(下面是摘自隨機用表的第四行至第七行)

(2)若數(shù)學優(yōu)秀率為35%,求m,n的值;
(3)在語文成績?yōu)榱嫉膶W生中,已知m≥13,n≥11,求數(shù)學成績“優(yōu)”與“良”的人數(shù)少的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設點P,Q分別是曲線y=xe-x(e是自然對數(shù)的底數(shù))和直線y=x+3上的動點,則P,Q兩點間距離的最小值為( 。
A.$\frac{(4e-1)\sqrt{2}}{2}$B.$\frac{(4e+1)\sqrt{2}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知條件p:x>1,條件q:$\frac{1}{x}$<1,則p是q的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求a的取值范圍
(3)若x∈[t,t+2],試求y=f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在平面直角坐標系xOy中,過A(-1,0),B(1,2)兩點直線的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=2sin(2x+ϕ)+1的圖象過點(0,0),且$-\frac{π}{2}<ϕ<0$.
(Ⅰ)求ϕ的值;
(Ⅱ)求函數(shù)f(x)的最大值,并求此時x的值.

查看答案和解析>>

同步練習冊答案