8.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右焦點(diǎn)為F,點(diǎn)F到漸近線的距離為2a,則該雙曲線的離心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.3

分析 設(shè)F(c,0),漸近線方程為y=$\frac{a}$x,運(yùn)用點(diǎn)到直線的距離公式可得b=2a,由a,b,c的關(guān)系和點(diǎn)到直線的距離公式,可得c=$\sqrt{5}$a,運(yùn)用離心率公式計(jì)算即可得到所求值.

解答 解:由題意可設(shè)F(c,0),漸近線方程為y=$\frac{a}$x,
由題意可得d=$\frac{|bc|}{\sqrt{{a}^{2}+^{2}}}$=b=2a,
可得c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{5}$a,
即有離心率e=$\frac{c}{a}$=$\sqrt{5}$.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,注意運(yùn)用點(diǎn)到直線的距離公式,考查漸近線方程和離心率公式的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的右焦點(diǎn),雙曲線兩漸近線分別為l1,l2,過點(diǎn)F作直線l1的垂線,分別交l1,l2于A,B兩點(diǎn),若A,B兩點(diǎn)均在x軸上方且|OA|=3,|OB|=5,則雙曲線的離心率e為( 。
A.$\frac{\sqrt{5}}{2}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C:ρ=$\sqrt{2}$.直線l的參數(shù)方程為:$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(I)寫出曲線C的參數(shù)方程和直線l的極坐標(biāo)方程:
(Ⅱ)若直線1與曲線C交于A,B兩點(diǎn).設(shè)點(diǎn)P是曲線C上的一個(gè)動(dòng)點(diǎn)(且不與點(diǎn)A,B重合).求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.閱讀如圖所示的程序框圖,若運(yùn)行該程序后輸出的y的值為4,則輸入的實(shí)數(shù)x的值為( 。
A.4B.16C.-1或16D.-1或$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.執(zhí)行如圖所示的程序框圖,若輸入x=2,則輸出的結(jié)果為( 。
A.2B.5C.11D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)F1,F(xiàn)2是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右兩個(gè)焦點(diǎn),若雙曲線右支上存在一點(diǎn)P,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)•($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O為坐標(biāo)原點(diǎn)),且|PF1|=$\sqrt{2}$|PF2|,則雙曲線的離心率為( 。
A.$\frac{\sqrt{3}+2}{2}$B.$\sqrt{3}$+2C.$\frac{\sqrt{3}+\sqrt{6}}{2}$D.$\sqrt{3}$+$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)為F(c,0),過F且垂直于x軸的直線在第一象限內(nèi)與雙曲線、雙曲線的漸近線的交點(diǎn)依次為A,B,若A為BF的中點(diǎn),則雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以下四個(gè)命題中:
(1)在回歸分析中,可用相關(guān)指數(shù)R2的值判斷模型的擬合效果,R2越大,模型的擬合效果越好;
(2)若兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)r越接近于1;
(3)若統(tǒng)計(jì)數(shù)據(jù)x1,x2,x3,…,xn的方差為1,則2x1,2x2,2x3,…,2xn的方差為2;
(4)對分類變量x與y的隨機(jī)變量k2的觀察值k0來說,k0越小,判斷“x與y有關(guān)系”的把握程度越大.
其中真命題的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知一扇形的周長為24cm,當(dāng)這個(gè)扇形的面積最大時(shí),半徑R的值為( 。
A.4 cmB.5cmC.6cmD.7cm

查看答案和解析>>

同步練習(xí)冊答案