20.一個等差數(shù)列的首項為a1=1,末項an=41(n≥3)且公差為整數(shù),那么項數(shù)n的取值個數(shù)是( 。
A.6B.7C.8D.不確定

分析 根據(jù)等差數(shù)列的定義與性質(zhì),列出方程,求出對應的公差d與項數(shù)n即可.

解答 解:等差數(shù)列{an}中,首項a1=1,末項an=41(n≥3)且公差d為整數(shù),
∴an-a1=(n-1)d=40,
∴d=$\frac{40}{n-1}$,且3≤n≤41;
∴n=3、5、6、9、11、21、41時,對應d=20、10、8、5、4、2、1;
∴項數(shù)n的取值個數(shù)是7.
故選:B.

點評 本題考查了等差數(shù)列的定義與性質(zhì)的應用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.用“轉(zhuǎn)移代入法”解以下各題:
(1)已知點A在圓x2+y2=16上移動,P(x,y)是連結(jié)點M(8,0)和點A的線段的中點,求點P的軌跡方程;
(2)已知圓x2+y2=9上的定點P(0,3)及動點Q,延長弦PQ至R,使$\frac{PQ}{QR}$=$\frac{1}{3}$,求點R的軌跡方程;
(3)已知定點A(2,0)及圓x2+y2=1上的動點Q,∠AOQ的角平分線交AQ于點P(O為坐標原點),求動點P的軌跡方程;
(4)已知點A(-1,0)與點B(1,0),C是圓x2+y2=1上的動點,連結(jié)BC并延長到點D,使|CD=|BC|,求AC與OD(O為坐標原點)的交點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.集合{1,2,3}的真子集個數(shù)有( 。
A.C${\;}_{3}^{3}$個B.(C${\;}_{3}^{1}$+C${\;}_{3}^{2}$+C${\;}_{3}^{3}$)個
C.(C${\;}_{3}^{0}$+C${\;}_{3}^{1}$+C${\;}_{3}^{2}$)個D.(C${\;}_{3}^{0}$+C${\;}_{3}^{1}$+C${\;}_{3}^{2}$+C${\;}_{3}^{3}$)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知sinα=-$\frac{3}{5}$,且α∈(-π,-$\frac{π}{2}$),則sin$\frac{α}{2}$=-$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.角θ滿足sinθtanθ>0,則角θ的終邊落在( 。
A.第一或第三象限B.第二或第四象限C.第一或第四象限D.第三或第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.代數(shù)式2$\sqrt{{x}^{2}+1}$-x的最小值是( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)是以2為周期的偶函數(shù),且當x∈(0,1)時,f(x)=x+1,則f(x)在(1,2)內(nèi)的解析式是f(x)=3-x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設(shè)函數(shù)f(x)=lnx-x
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)y=f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2+1,g(x)=2ax+b(a,b∈R).
(1)若a=$\frac{1}{2}$,b=-2,求函數(shù)G(x)=f(x)g(x)的單調(diào)區(qū)間;
(2)設(shè)a>0,求證:函數(shù)F(x)=$\frac{g(x)}{f(x)}$有一個極小值和一個極大值點;
(3)當b=0時,若對任意的x∈(0,∞),f(x)+g(x)<ex恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案