3.已知圓的半徑為2$\sqrt{3}$,圓心在y=2x上,且圓被直線(xiàn)x-y=0截得的弦長(zhǎng)為4,求圓的方程.

分析 設(shè)圓心為(a,b),得$\left\{\begin{array}{l}{b=2a}\\{4+(\frac{|a-b|}{\sqrt{2}})^{2}=12}\end{array}\right.$,由此能求出圓的標(biāo)準(zhǔn)方程.

解答 解:設(shè)圓心為(a,b),則圓心到直線(xiàn)x-y=0的距離為$\frac{|a-b|}{\sqrt{2}}$,
∵圓的半徑為2$\sqrt{3}$,圓心在y=2x上,且圓被直線(xiàn)x-y=0截得的弦長(zhǎng)為4,
∴$\left\{\begin{array}{l}{b=2a}\\{4+(\frac{|a-b|}{\sqrt{2}})^{2}=12}\end{array}\right.$,
∴解得a=4,b=8或a=-4,b=-8,
∴圓的標(biāo)準(zhǔn)方程是(x-4)2+(y-8)2=12或(x+4)2+(y+8)2=12.

點(diǎn)評(píng) 本題考查圓的方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.當(dāng)x∈(1,+∞)時(shí),下列函數(shù)中圖象全在直線(xiàn)y=x下方的增函數(shù)是( 。
A.$y={x^{\frac{1}{2}}}$B.y=x2C.y=x3D.y=x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.過(guò)點(diǎn)P(2,-3)的等軸雙曲線(xiàn)的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{y}^{2}}{9}$-$\frac{{x}^{2}}{5}$=1B.$\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{13}$=1C.$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{5}$=1D.$\frac{{y}^{2}}{13}$-$\frac{{x}^{2}}{13}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ABC=45°,PA⊥底面ABCD,AB=AC=PA=2,E、F分別為BC、AD的中點(diǎn),點(diǎn)M在線(xiàn)段PD上.
(Ⅰ)求證:EF⊥平面PAC;
(Ⅱ)設(shè)$\frac{PM}{PD}=λ$,若直線(xiàn)ME與平面PBC所成的角θ的正弦值為$\frac{{\sqrt{15}}}{15}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線(xiàn)l:$\frac{x}{m}$+$\frac{y}{n}$=1過(guò)點(diǎn)A(1,2),則直線(xiàn)l與x、y正半軸圍成的三角形的面積的最小值為( 。
A.2$\sqrt{2}$B.3C.$\frac{5\sqrt{2}}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)函數(shù)$f(x)=sin({x+\frac{π}{2}})({\sqrt{3}sinx+cosx}),x∈R$.
(I)求f(x)的最小正周期及值域;
(II)已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$f(A)=1,a=\sqrt{3},b+c=3$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.過(guò)點(diǎn)P(-4,0)作函數(shù)y=$\sqrt{4-{x}^{2}}$的切線(xiàn)l,則切線(xiàn)l的方程為( 。
A.y=$\sqrt{3}$(x+4)B.y=$\frac{\sqrt{3}}{3}$(x+4)C.y=$\frac{\sqrt{2}}{2}$(x+4)D.y=$\sqrt{2}$(x+4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)y=ax(a>0且a≠1)是減函數(shù),則下列函數(shù)圖象正確的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知命題p:實(shí)數(shù)m滿(mǎn)足m2-7am+12a2<0(a>0),命題q:實(shí)數(shù)m滿(mǎn)足方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{6-m}$=1表示焦點(diǎn)在y軸上的橢圓.
(1)當(dāng)a=1時(shí),若p∧q為真,求m的取值范圍;
(2)若非q是非p的充分不必要條件,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案