【題目】已知f(x)=ex+acosx(e為自然對(duì)數(shù)的底數(shù)).
(1)若f(x)在x=0處的切線過點(diǎn)P(1,6),求實(shí)數(shù)a的值;
(2)當(dāng)x∈[0, ]時(shí),f(x)≥ax恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:∵f'(x)=ex﹣asinx,∴f'(0)=1.f(0)=1+a,
∴f(x)在x=0處的切線方程為y=x+1+a,
∵切線過點(diǎn)P(1,6),∴6=2+a,∴a=4
(2)解:由f(x)≥ax,可得ex≥a(x﹣cosx),(*)
令g(x)=x﹣cosx, ,
∴g'(x)=1+sinx>0,且g(0)=﹣1<0, ,
∴存在 ,使得g(m)=0,
當(dāng)x∈(0,m)時(shí),g(m)<0;當(dāng) 時(shí),g(m)>0.
①當(dāng)x=m時(shí),em>0,g(m)=m﹣cosm=0,
此時(shí),對(duì)于任意a∈R(*)式恒成立;
②當(dāng) 時(shí),g(x)=x﹣cosx>0,
由ex≥a(x﹣cosx),得 ,
令 ,下面研究h(x)的最小值.
∵ 與t(x)=x﹣cosx﹣sinx﹣1同號(hào),
且t'(x)=1+sinx﹣cosx>0對(duì) 成立,
∴函數(shù)t(x)在 上為增函數(shù),而 ,
∴ 時(shí),t(x)<0,∴h'(x)<0,
∴函數(shù)h(x)在 上為減函數(shù),∴ ,∴ .
③當(dāng)x∈[0,m)時(shí),g(x)=x﹣cosx<0,
由ex≥a(x﹣cosx),得 ,
由②可知函數(shù) 在[0,m)上為減函數(shù),
當(dāng)x∈[0,m)時(shí),h(x)max=h(0)=﹣1,∴a≥﹣1,
綜上,
【解析】(1)求導(dǎo)數(shù),可得f(x)在x=0處的切線方程,利用f(x)在x=0處的切線過點(diǎn)P(1,6),求實(shí)數(shù)a的值;(2)由f(x)≥ax,可得ex≥a(x﹣cosx),令g(x)=x﹣cosx, ,分類討論由ex≥a(x﹣cosx),得 ,令 ,研究h(x)的最值,即可求實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點(diǎn).
(I)求證:EM⊥AD;
(II)求二面角A﹣BE﹣C的余弦值;
(III)在線段EC上是否存在點(diǎn)P,使得直線AP與平面ABE所成的角為45°,若存在,求出 的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,an=logn(n+1)(n≥2,n∈N*).定義:使乘積a1·a2·a3……ak為正整數(shù)的k(k∈N*)叫做“和諧數(shù)”,則在區(qū)間[1,2018]內(nèi)所有的“和諧數(shù)”的和為
A. 2036 B. 2048 C. 4083 D. 4096
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且過點(diǎn).
(1)求橢圓方程;
(2)設(shè)不過原點(diǎn)的直線,與該橢圓交于兩點(diǎn),直線的斜率依次為,滿足,試問:當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集為[0,4],求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的交點(diǎn)為F,準(zhǔn)線為l,過點(diǎn)F的直線與拋物線交于M,N兩點(diǎn),若MR⊥l,垂足為R,且∠NRM=∠NMR,則直線MN的斜率為( )
A.±8
B.±4
C.±2
D.±2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)與點(diǎn)的距離比它的直線的距離小2.
(1)求點(diǎn)的軌跡方程;
(2)是點(diǎn)軌跡上互相垂直的兩條弦,問:直線是否經(jīng)過軸上一定點(diǎn),若經(jīng)過,求出該點(diǎn)坐標(biāo);若不經(jīng)過,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面與平面交于直線是平面內(nèi)不同的兩點(diǎn),是平面內(nèi)不同的兩點(diǎn),且不在直線上,分別是線段的中點(diǎn),下列命題中正確的個(gè)數(shù)為( )
①若與相交,且直線平行于時(shí),則直線與也平行;
②若是異面直線時(shí),則直線可能與平行;
③若是異面直線時(shí),則不存在異于的直線同時(shí)與直線都相交;
④兩點(diǎn)可能重合,但此時(shí)直線與不可能相交
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com