如圖,已知斜三棱柱ABC-A1B1C1的底面△ABC為直角三角形,∠C=90°,側(cè)棱與底面成60°角,點B1在底面的射影DBC的中點.

求證:AC⊥平面BCC1B1.
B1D⊥面ABC,
B1DAC.
又∵∠C=90°,
BCAC,
B1DBC=D,
B1D、平面BCC1B1,
AC⊥平面BCC1B1.
空間直線和平面
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)在邊長為3的正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足,將沿EF折起到的位置,使二面角成直二面角,連結(如圖)(I)求證:  (Ⅱ)求點B到面的距離(Ⅲ)求異面直線BP與所成角的余弦

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A,B,C三點在球心為O,半徑為R的球面上,AC⊥BC,且AB=R,那么A,B兩點的球面距離為____________,球心到平面ABC的距離為______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若一直線a上有兩點到一平面α內(nèi)某一直線b的距離相等,則直線與平面的位置關系是(  )
A.平行B.相交
C.在平面內(nèi)D.以上均有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知正四棱柱ABCD-A1B1C1D1,AB=1,AA1=2,點ECC1中點,點FBD1中點.

(1)證明:EFBD1CC1的公垂線(即證EFBD1、CC1都垂直);
(2)求點D1到面BDE的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四面體ABCD中,CB=CD,AD⊥BD,且E,F(xiàn)分別是AB,BD的中點,求證:
(1)直線EF∥平面ACD;
(2)平面EFC⊥平面BCD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

正四棱臺AC1的高是17 cm,兩底面的邊長分別是4 cm和16 cm,求這個棱臺的側(cè)棱長和斜高.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


指出圖中的圖由哪些簡單的幾何體構成.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

、如圖,將邊長為1的正六邊形鐵皮的六個角各切去一個全等的四邊形,再沿虛線折成一個無蓋的正六棱柱容器,當容器底邊長為        時,容積最大。

查看答案和解析>>

同步練習冊答案