精英家教網 > 高中數學 > 題目詳情
5.如圖,在梯形ABCD中,AB∥CD,∠DAC=30°,∠CAB=45°,CD=$\sqrt{6}$-$\sqrt{2}$.
(Ⅰ)求AD的長;
(Ⅱ)若BC=$\sqrt{10}$,求△ABC的面積.

分析 (Ⅰ)由已知可求∠DCA=∠CAB=45°,進而利用正弦定理可求AD的值.
(Ⅱ)利用兩角和的正弦函數公式可求sin∠ADC,利用正弦定理可求AC,由余弦定理可求AB,進而利用三角形面積公式即可計算得解.

解答 (本題滿分為12分)
解:(Ⅰ)因為AB∥CD,
所以∠DCA=∠CAB=45°,…(1分)
因為$\frac{AD}{sin∠ACD}=\frac{DC}{sin∠DAC}$,…(2分)
所以AD=$\frac{(\sqrt{6}-\sqrt{2})×sin45°}{sin30°}$=2$\sqrt{3}$-2. …(4分)
(Ⅱ)∠ADC=180°-(30°+45°)=105°,
所以,sin∠ADC=sin(45°+60°)=sin45°cos60°+cos45°sin60°=$\frac{\sqrt{6}+\sqrt{2}}{4}$,…(5分)
因為$\frac{AC}{sin∠ADC}$=$\frac{DC}{sin∠DAC}$,
所以AC=2,…(7分)
設AB=x,
因為,BC2=AC2+AB2-2AC•ABcos∠CAB,
可得:x2-2$\sqrt{2}$x-6=0,
所以,AB=3$\sqrt{2}$,….(10分)
所以,S△ABC=$\frac{1}{2}$AC•ABsin∠CAB=3. …(12分)

點評 本題考查三角函數、解三角形等基礎知識,考查推理論證能力、運算求解能力,考查數形結合的數學思想方法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

15.△ABC的內角A、B、C的對邊分別為a、b、c,滿足:2cosC(acosB+bcosA)=c.
(1)求C;
(2)若a=2,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知A(2,2),B(a,b),對于圓x2+y2=4,上的任意一點P都有$\frac{|PA|}{|PB|}$=$\sqrt{2}$,則點B的坐標為(1,1).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.溫江某農戶計劃種植蒜臺和花菜,種植面積不超過50畝,投入資金不超過54萬元,假設種植蒜臺和菜花的產量、成本和價格如表所示:
 年產量/畝年種植成本/畝 每噸售價 
 蒜臺 4噸 1.2萬元 0.55萬元
 花菜6噸  0.9萬元 0.3萬元
那么一年的種植總利潤(總利潤=總銷售收入-總種植成本)最大為(  )
A.50萬B.48萬C.47萬D.45萬

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a,2b,c成等比數列,則cosB的最小值為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.命題“若m2+n2=0,則mn=0”的逆否命題是“若mn≠0,則m2+n2≠0”.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.函數f(x)=ax2+2(a-3)x+1在區(qū)間[-2,+∞)上遞減,則實數a的取值范圍是( 。
A.(-∞,0)B.[-3,+∞)C.[-3,0]D.(0,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

14.已知函數f(x)=ax2-2ax+1+b(a>0)在區(qū)間[0,3]上有最大值5和最小值1.
(Ⅰ)求實數a,b的值;
(Ⅱ)若存在x∈[-1,3]使得方程|f(x)-2x|=t2-2t-8有解,求實數t的取值范圍;
(Ⅲ)設$g(x)=\frac{f(x)}{x}$,若$g({2^x})+k•\frac{2}{2^x}-k≥0$在x∈[1,2]上恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.已知函數f(x)=$\left\{\begin{array}{l}\frac{1}{x^2},x<1\\{log_2}({x+4}),x≥1\end{array}$,則$f(f(\frac{1}{2}))$=( 。
A.2B.3C.4D.8

查看答案和解析>>

同步練習冊答案