14.計(jì)算或化簡:
(1)$lg25+lg4-{({\frac{27}{8}})^{\frac{1}{3}}}+{3^{{{log}_3}2}}+{({\sqrt{2}})^0}$
(2)$\frac{{cos({\frac{π}{2}-α})cos({α+π})tan({α-5π})}}{{cos({α-π})sin({3π-α})sin({-α-π})}}$.

分析 (1)直接由對數(shù)的運(yùn)算性質(zhì)計(jì)算得答案;
(2)直接由三角函數(shù)的誘導(dǎo)公式化簡計(jì)算得答案.

解答 解:(1)$lg25+lg4-{({\frac{27}{8}})^{\frac{1}{3}}}+{3^{{{log}_3}2}}+{({\sqrt{2}})^0}$=$lg(25×4)-(\frac{3}{2})^{3×\frac{1}{3}}+2+1$=2-$\frac{3}{2}+3$=$\frac{7}{2}$.
(2)$\frac{{cos({\frac{π}{2}-α})cos({α+π})tan({α-5π})}}{{cos({α-π})sin({3π-α})sin({-α-π})}}$=$\frac{sinα•(-cosα)•tanα}{-cosα•sinα•sinα}$=$\frac{1}{cosα}$.

點(diǎn)評 本題考查了三角函數(shù)的化簡求值,考查了三角函數(shù)的誘導(dǎo)公式,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={x∈N*|-3<x≤5},N={x|x≤-5或x≥5},則M∩(∁UN)等于( 。
A.{1,2,3,4,5}B.{x|-3<x<5}C.{x|-5<x≤5}D.{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,均有f(x+2)=-f(x),且當(dāng)x∈[0,2),f(x)=log2(x+1),則f(-2015)+f(2016)等于( 。
A.1+log23B.-1+log23C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=|log3x|,若f(a)=f(b)且a≠b,則$\frac{1}{a}$+$\frac{2}$且的最小值是$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線l斜率的在[-$\sqrt{3}$,$\frac{\sqrt{3}}{3}$]上取值時(shí),傾斜角的范圍是[0,$\frac{π}{6}$]∪[$\frac{2π}{3}$,π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.過點(diǎn)A(4,-3)作直線,斜率為k,如果直線與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1只有一個(gè)公共點(diǎn),則k的值為( 。
A.0<k<$\frac{3}{4}$B.k=$\frac{3}{4}$C.k=-$\frac{3}{4}$D.k>$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知等差數(shù)列{an}的前n項(xiàng)和Sn,n∈N*,a2=5,S8=100
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)bn=4an+2n,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)f(x)的定義域?yàn)镈,若滿足:①f(x)在D內(nèi)是單調(diào)函數(shù);②存在[m,n]⊆D,使f(x)在[m,n]的值域?yàn)閇2m,2n],那么就稱函數(shù)f(x)為“倍域函數(shù)”.若f(x)=ln(ex+6x+t)是“倍域函數(shù)”,則實(shí)數(shù)t的取值范圍是(  )
A.$(-\frac{3}{4}-6ln\frac{3}{2},2-6ln2)$B.(2-6ln2,+∞)
C.$(-\frac{3}{4}-6ln\frac{3}{2},6ln2-2)$D.(-∞,6ln2-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.函數(shù)Y=$\frac{sinx-cosx}{2cosx}$在點(diǎn)${x_0}=\frac{π}{3}$處的導(dǎo)數(shù)等于2.

查看答案和解析>>

同步練習(xí)冊答案