2.已知集合A={x|-1<x≤2},集合B={x|-2≤x<3},則∁BA=( 。
A.[-2,-1]∪(2,3)B.[-2,-1)∪(2,3]C.(-2,-1]∪[2,3]D.(-2,-1)∪(2,3)

分析 由全集B,找出A的補集即可.

解答 解:∵A=(-1,2],B=[-2,3),
∴∁BA=[-2,-1]∪(2,3),
故選:A.

點評 此題考查了補集及其運算,熟練掌握補集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(1)求證:AB1⊥CC1;
(2)若$A{B_1}=\sqrt{6}$,求二面角C-AB1-A1的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,AB切⊙O于點B,點G為AB的中點,過G作⊙O的割線交⊙O于點C、D,連接AC并延長交⊙O于點E,連接AD并交⊙O于點F,求證:EF∥AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AD=PD=2,PA=2$\sqrt{2}$,∠PDC=120°,點E為線段PC的中點,點F在線段AB上.
(Ⅰ)若AF=$\frac{1}{2}$,求證:CD⊥EF;
(Ⅱ)設(shè)平面DEF與平面DPA所成二面角的平面角為θ,試確定點F的位置,使得cosθ=$\frac{{\sqrt{3}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知不等式x2-2x+5-2a≥0.
(1)若不等式對于任意實數(shù)x恒成立,求實數(shù)a的取值范圍;
(2)若存在實數(shù)a∈[4,$\sqrt{2016}}$]使得該不等式成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(1,-1,0),單位向量$\overrightarrow{n}$滿足$\overrightarrow{n}$⊥$\overrightarrow{a}$,$\overrightarrow{n}$⊥$\overrightarrow$,則$\overrightarrow{n}$=($\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3}$)或(-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$,-$\frac{\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=cos2x+3sinx的值域是( 。
A.$[{-4,\frac{17}{8}}]$B.$(-∞,-4)∪(\frac{17}{8},+∞)$C.[-4,4]D.(-∞,-4)∪(4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合U={1,2,3,4,5,6},M={1,3,4},則∁UM(  )
A.{3,5,6}B.{1,3,5}C.{2,5,6}D.U

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列幾種推理是演繹推理的是(  )
A.某校高二1班55人,2班54人,3班52人,由此推出高二所有班級人數(shù)超過50人
B.在數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此歸納數(shù)列{an}的通項公式
C.由平面三角形性質(zhì),推測空間四面體的性質(zhì)
D.兩直線平行,內(nèi)錯角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯角,則∠A=∠B

查看答案和解析>>

同步練習(xí)冊答案