12.下列幾種推理是演繹推理的是( 。
A.某校高二1班55人,2班54人,3班52人,由此推出高二所有班級人數(shù)超過50人
B.在數(shù)列{an}中,a1=1,an+1=$\frac{a_n}{{1+{a_n}}}$(n=1,2,3,…),由此歸納數(shù)列{an}的通項公式
C.由平面三角形性質(zhì),推測空間四面體的性質(zhì)
D.兩直線平行,內(nèi)錯角相等,如果∠A與∠B是兩條平行直線的內(nèi)錯角,則∠A=∠B

分析 本題考查的是演繹推理的定義,判斷一個推理過程是否是演繹推理關鍵是看他是否符合演繹推理的定義,能否從推理過程中找出“三段論”的三個組成部分.

解答 解:選項A是由特殊到一般的推理過程,為歸納推理,
選項B,是由特殊到一般的推理過程,為歸納推理,
選項C:是由特殊到與它類似的另一個特殊的推理過程,是類比推理,
選項D中,兩直線平行,內(nèi)錯角相等,是大前提;∠A與∠B是兩條平行直線的內(nèi)錯角,是小前提;∠A=∠B為結論.
故選:D.

點評 本題考查歸納推理、類比推理、演繹推理的定義,正確理解定義是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.已知集合A={x|-1<x≤2},集合B={x|-2≤x<3},則∁BA=( 。
A.[-2,-1]∪(2,3)B.[-2,-1)∪(2,3]C.(-2,-1]∪[2,3]D.(-2,-1)∪(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.“中國式過馬路”存在很大的交通安全隱患,某調(diào)查機構為了解路人對“中國式過馬路”的態(tài)度是否與性別有關,從馬路旁隨機抽取30名路人進行了問卷調(diào)查,得到了如下列聯(lián)表:
男性女性合計
反感10
不反感8
合計30
已知在這30人中隨機抽取1人抽到反感“中國式過馬路”的路人的概率是$\frac{8}{15}$.
(Ⅰ)請將上面的列聯(lián)表補充完整(在答題卷上直接填寫結果,不需要寫求解過程),并據(jù)此資料判斷是否有95%的把握認為反感“中國式過馬路”與性別有關?
(Ⅱ)若從這30人中的女性路人中隨機抽取2人參加一活動,記反感“中國式過馬路”的人數(shù)為X,求X的分布列.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.讀如圖的流程圖,若輸入的值為-5時,輸出的結果是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知p:方程x2+mx+4=0有兩個不等的負根;q:方程4x2+4(m-2)x+1=0無實根,若p或q為真,p且q為假,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若向量$\overrightarrow a$與$\overrightarrow b$滿足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$.則向量$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{π}{4}$,$\overrightarrow a$在$\overrightarrow b$上的投影=1,|$\overrightarrow a+\overrightarrow b$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知點A(1,2),直線l:x-y-1=0,則點A關于直線l的對稱點A'的坐標為(0,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知集合P={直角三角形},Q={等腰三角形},若△ABC的三邊a,b,c所對的角分別是A,B,C,則滿足acosA=bcosB的三角形的集合是( 。
A.PB.QC.P∪QD.P∩Q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知點P是橢圓$\frac{x^2}{5}$+y2=1上任一點,F(xiàn)為橢圓的右焦點,Q(3,0),且|PQ|=$\sqrt{2}$|PF|,則滿足條件的點 P的個數(shù)為( 。
A.4B.3C.2D.0

查看答案和解析>>

同步練習冊答案