6.若x∈R,則f(x)=3sinx+4cosx的最大值是5.

分析 利用輔助角公式化簡函數(shù)的解析式,再利用正弦函數(shù)的最大值得出結(jié)論.

解答 解:f(x)=3sinx+4cosx=5($\frac{3}{5}$sinx+$\frac{4}{5}$cosx)=5sin(x+θ),
其中,cosθ=$\frac{3}{5}$,sinθ=$\frac{4}{5}$,θ∈(0,$\frac{π}{2}$),
故函數(shù)f(x)的最大值為5,
故答案為:5.

點(diǎn)評(píng) 本題主要考查輔助角公式,正弦函數(shù)的最大值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知正數(shù)a,b滿足2ab+b2=b+1,則a+5b的最小值為$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)數(shù)列{an}的前幾項(xiàng)的Sn=n(5-n),求通項(xiàng)公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)的導(dǎo)數(shù):
(1)f(x)=x•tanx;
(2)f(x)=2-2sin2$\frac{x}{2}$;
(3)f(x)=$\frac{x-1}{x+1}$;
(4)f(x)=$\frac{sinx}{1+sinx}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.定積分∫${\;}_{0}^{1}$$\sqrt{x(2-x)}$dx的值為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=x2-2tx+2在[0,1]的最小值為g(t),則g(t)的表達(dá)式為g(t)=$\left\{\begin{array}{l}{2,}&{t≤0}\\{-{t}^{2}+2,}&{0<t<1}\\{-2t+3,}&{t≥1}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知sinα=-$\frac{4}{5}$,α∈(π,$\frac{3π}{2}$),則tan$\frac{α}{2}$等于(  )
A.-2B.$\frac{1}{2}$C.-$\frac{1}{2}$或2D.-2或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)0<a<b,過兩定點(diǎn)A(a,0)和B(b,0)分別引直線l和m,使之與拋物線y2=x有四個(gè)不同的交點(diǎn),當(dāng)這四點(diǎn)共圓時(shí),這種直線l和m的交點(diǎn)P的軌跡為2x-(a+b)=0,(y≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{sin^2}x-\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間$[\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案