8.已知z為復(fù)數(shù),z+2i和$\frac{z}{2-i}$均為實數(shù),其中i是虛數(shù)單位.則復(fù)數(shù)|z|=$2\sqrt{5}$.

分析 設(shè)復(fù)數(shù)z=a+bi(a,b∈R),由題意,z+2i=a+(b+2)i∈R,則虛部等于0,可得b的值,又$\frac{z}{2-i}$=$\frac{2a-b}{5}+\frac{a+2b}{5}i$i∈R,則虛部等于0,可得a的值,則復(fù)數(shù)z可求,再由復(fù)數(shù)求模公式計算得答案.

解答 解:設(shè)復(fù)數(shù)z=a+bi(a,b∈R),
由題意,z+2i=a+bi+2i=a+(b+2)i,
∵z+2i是實數(shù),
∴b+2=0,即b=-2.
又$\frac{z}{2-i}$=$\frac{(a+bi)(2+i)}{(2-i)(2+i)}=\frac{(2a-b)+(a+2b)i}{5}$=$\frac{2a-b}{5}+\frac{a+2b}{5}i$,
∵$\frac{z}{2-i}$均為實數(shù),
∴2b+a=0,即a=-2b=4.
∴z=4-2i.
則|z|=$\sqrt{{4}^{2}+(-2)^{2}}=2\sqrt{5}$.
故答案為:$2\sqrt{5}$.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(理科學(xué)生做)在長方體ABCD-A′B′C′D′中,AB=4,BC=CC′=2,求
(1)直線B′D與BC′所成角的大;
(2)二面角A-B′D-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若關(guān)于x的不等式$\sqrt{9-{x^2}}$≤k(x+2)-$\sqrt{2}$的解集為[a,b],且b-a=2,則k=( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知直線2ax+by-2=0(a>0,b>0)經(jīng)過圓(x-1)2+(y-2)2=4的圓心,則$\frac{1}{a}$+$\frac{1}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC三邊上的高依次為2、3、4,則△ABC為( 。
A.銳角三角形B.鈍角三角形
C.直角三角形D.不存在這樣的三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)$\overrightarrow a$=(-1,1),$\overrightarrow b$=(x,3),$\overrightarrow c$=(5,y),$\overrightarrow d$=(8,6),且$\overrightarrow b∥\overrightarrow d,(4\overrightarrow a+\overrightarrow d)⊥\overrightarrow c$.
(1)求$\overrightarrow b$和$\overrightarrow c$;     
(2)求$\overrightarrow c$在$\overrightarrow a$方向上的投影;    
(3)求λ1和λ2,使$\overrightarrow c={λ_1}\overrightarrow a+{λ_2}$$\overrightarrow b$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.邊長為1的正方形的直觀圖面積為$\frac{{\sqrt{2}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.袋中有4個標(biāo)號為1,2,3,4的相同小球,從中接連取兩次,每次取一球,求取出的2個球號碼之和X的分布列和期望.
(1)不放回取樣;
(2)放回取樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\left\{\begin{array}{l}x≤4\\ x-y+4≥0\\{(x+y-2)^2}≤4\end{array}\right.$,則z=x-2y的取值范圍是( 。
A.[-8,12]B.[-4,12]C.[-4,4]D.[-8,4]

查看答案和解析>>

同步練習(xí)冊答案