(本題滿分12分)已知函數(shù)y=的定義域為R,解關于x的不等式

時,;當時,Ф;當時,.

解析試題分析:由條件可得0≤a≤1,原不等式可化為(x-a)[x-(1-a)]>0,分0≤a<、a=、<a≤1三種情況,分別求出不等式的解集.
解:∵函數(shù)y=的定義域為R,∴恒成立. …1分
時,,不等式恒成立;當時,則
解得.綜上, ………………………4分
.……6分
,
∴(1)當,即時,;
(2)當,即時,,不等式無解;
(3)當,即時,.………………………………10分
∴原不等式的解集為:當時,;當時,Ф;當時,. ……………………12分
考點:本試題主要考查了二元一次不等式的解法,函數(shù)的恒成立問題,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題.
點評:解決該試題的關鍵是由條件可得0≤a≤1,對于參數(shù)a,分0≤a<、a=、<a≤1三種情況,分別求出不等式的解集.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)上的增函數(shù),設
用定義證明:上的增函數(shù);(6分)
證明:如果,則>0,(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)函數(shù)定義在R上的偶函數(shù),當時, 
(1)寫出單調區(qū)間;
(2)函數(shù)的值域;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),求:
(1)函數(shù)的定義域。 (2)求使的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12分).已知函數(shù)f ()=, 若2)=1;
(1) 求a的值; (2)求的值;
(3)解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)求證:函數(shù)上是單調遞增函數(shù);
(2)當時,求函數(shù)在上的最值;
(3)函數(shù)上恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知定義域為的函數(shù)同時滿足:
①對于任意的,總有;         ②;
③若,則有成立。
的值;
的最大值;
若對于任意,總有恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知平面上的線段l及點P,在l上任取一點Q,線段PQ長度的最小值稱為點P到線段l的距離,記作
(1)已知點,線段,求;
(2)設A(-1,0),B(1,0),求點集所表示圖形的面積;
(3)若M(0,1),O(0,0),N(2,0),畫出集合所表示的圖形。(本題滿分14分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
判斷并證明函數(shù)上的單調性.

查看答案和解析>>

同步練習冊答案