11.如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點(diǎn),BM的延長(zhǎng)線交
⊙O于N,過點(diǎn)N的切線交CA的延長(zhǎng)線于P.
(Ⅰ)求證:$\frac{PM}{PA}$=$\frac{PC}{PN}$;
(Ⅱ)若⊙O的半徑為2$\sqrt{3}$,OA=$\sqrt{3}$OM,求MN的長(zhǎng).

分析 (Ⅰ)連結(jié)ON,運(yùn)用切線的性質(zhì)和切割線定理,結(jié)合等腰三角形的性質(zhì),即可得證;
(Ⅱ)延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,證得△BOM~△BND,可得對(duì)應(yīng)邊成比例,結(jié)合勾股定理,計(jì)算即可得到所求值.

解答 (Ⅰ)證明:連結(jié)ON,則ON⊥PN,且△OBN為等腰三角形,
則∠OBN=∠ONB,
∵∠PMN=∠OMB=90°-∠OBN,∠PNM=90°-∠ONB,
∴∠PMN=∠PNM,
∴PM=PN. 
由條件,根據(jù)切割線定理,有PN2=PA•PC,
所以PM2=PA•PC. 所以$\frac{PM}{PA}$=$\frac{PC}{PN}$;
(Ⅱ)解:OA=$\sqrt{3}$OM=$\sqrt{3}$,
∴OM=1,在Rt△BOM中,BM=$\sqrt{O{B}^{2}+O{M}^{2}}$=2.
延長(zhǎng)BO交⊙于點(diǎn)D,連結(jié)DN,
可得∠BND=∠BOM,∠OBM=∠NBD,
則△BOM~△BND,
于是$\frac{BO}{BN}=\frac{BM}{BD}$,則$\frac{\sqrt{3}}{BN}$=$\frac{2}{2\sqrt{3}}$,
∴BN=3,
∴MN=BN-BM=1.

點(diǎn)評(píng) 本題考查三角形相似的判定和性質(zhì)的運(yùn)用,考查圓的切割線定理和直角三角形的勾股定理的運(yùn)用,考查推理和運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)f(x)=$\sqrt{-cosx}$+$\sqrt{cotx}$的定義域是(π+2kπ,$\frac{3π}{2}$+2kπ],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某工廠對(duì)某種產(chǎn)品的產(chǎn)量與成本的資料分析后有如表數(shù)據(jù):
產(chǎn)量x(千件)2356
成本y(萬元)78912
經(jīng)過分析,知道產(chǎn)量x和成本y之間具有線性相關(guān)關(guān)系.
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\hat y$=$\hat b$x+$\hat a$;
(2)試根據(jù)(1)求出的線性回歸方程,預(yù)測(cè)產(chǎn)量為10千件時(shí)的成本.
參考公式:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為$\hat b$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.方程2x•x2=1的實(shí)數(shù)解的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.a(chǎn)<0,b<0的一個(gè)必要條件為( 。
A.a+b<0B.a-b>0C.$\frac{a}$>1D.$\frac{a}$<-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某食品廠為了檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上的40件產(chǎn)品作為樣本稱出它們的重量(單位:克).重量的分組區(qū)間為(490,495],(495,500],…,(510,515],由此得到樣本的頻率分布直方圖,如圖.
(1)根據(jù)頻率分布直方圖,求重量超過505克的產(chǎn)品數(shù)量,
(2)在上述抽取的40件產(chǎn)品中任取2件,設(shè)Y為重量超過505克的產(chǎn)品數(shù)量,求Y的分布列;
(3)從該流水線上任取5件產(chǎn)品,設(shè)ξ為重量超過505克的產(chǎn)品數(shù)量,求P(ξ=2)及ξ的數(shù)學(xué)期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1,則此雙曲線的離心率e為( 。
A.$\frac{1}{2}$B.2C.2$\sqrt{2}$D.$\frac{\sqrt{7}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+x2+bx(a為實(shí)常數(shù)).
(I)若a=-2,b=-3,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若b=0,且a>-2e2,求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)設(shè)b=0,若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)集合$M=\{y|y={x^{\frac{1}{2}}},1≤x≤9\}$,N={x|y=log2(2-x)},則圖中陰影部分表示的集合為( 。
A.{x|2≤x≤3}B.{x|1≤x≤2}C.$\{x|1≤x≤\sqrt{3}\}$D.

查看答案和解析>>

同步練習(xí)冊(cè)答案