分析 由定積分的運算,$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx,根據(jù)定積分的性質(zhì)可知:由y=丨x丨為偶函數(shù),則${∫}_{-1}^{1}$丨x丨dx=2${∫}_{0}^{1}$xdx=2($\frac{1}{2}$x2)${丨}_{0}^{1}$=1,y=sinx為奇函數(shù),${∫}_{-1}^{1}$sinxdx=0,即可求得$\int_{-1}^1{({|x|+sinx})}$dx的值.
解答 解:$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx,
由y=丨x丨為偶函數(shù),則${∫}_{-1}^{1}$丨x丨dx=2${∫}_{0}^{1}$xdx=2($\frac{1}{2}$x2)${丨}_{0}^{1}$=1,
y=sinx為奇函數(shù),${∫}_{-1}^{1}$sinxdx=0,
∴$\int_{-1}^1{({|x|+sinx})}$dx=${∫}_{-1}^{1}$丨x丨dx+${∫}_{-1}^{1}$sinxdx=1+0=1,
故答案為:1.
點評 本題考查定積分的性質(zhì),考查定積分的運算,考查計算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1-e,1) | B. | (1-e,∞) | C. | (1-e,1] | D. | (-∞,1-e)∪[1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $({\frac{2}{e}+\frac{e}{2},+∞})$ | B. | [e,+∞) | C. | [2,+∞) | D. | [2,e) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | $\sqrt{5}$ | C. | 5 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | [1,+∞) | D. | (-∞,1] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com