13.已知圓C:(x-1)2+(y-3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,則b等于( 。
A.±$\sqrt{5}$B.±$\sqrt{10}$C.±2$\sqrt{5}$D.±$\sqrt{30}$

分析 求出圓C的圓心C(1,3),半徑r=$\sqrt{2}$,求出圓C:(x-1)2+(y-3)2=2被y軸截得的線段AB的長為2,從而得到圓C:(x-1)2+(y-3)2=2被直線y=3x+b所截得的線段CD的長度為2,再求出圓心C(1,3)到直線y=3x+b的距離d,由勾股定理得:${r}^{2}=rbhxvnf^{2}+(\frac{CD}{2})^{2}$,由此能求出b.

解答 解:圓C:(x-1)2+(y-3)2=2的圓心C(1,3),半徑r=$\sqrt{2}$,
聯(lián)立$\left\{\begin{array}{l}{x=0}\\{(x-1)^{2}+(y-3)^{2}=2}\end{array}\right.$,得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$,
∴圓C:(x-1)2+(y-3)2=2被y軸截得的線段AB的長為2,
∵圓C:(x-1)2+(y-3)2=2被y軸截得的線段AB與被直線y=3x+b所截得的線段CD的長度相等,
∴圓C:(x-1)2+(y-3)2=2被直線y=3x+b所截得的線段CD的長度為2,
∵圓心C(1,3)到直線y=3x+b的距離d=$\frac{|3-3+b|}{\sqrt{9+1}}$=$\frac{|b|}{\sqrt{10}}$,
∴由勾股定理得:${r}^{2}=vvbbdhp^{2}+(\frac{CD}{2})^{2}$,
即2=$\frac{^{2}}{10}+1$,解得b=$±\sqrt{10}$.
故選:B.

點(diǎn)評 本題考查實(shí)數(shù)值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)、點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.過點(diǎn)(-2,0)的直線l與圓x2+y2=5相交于M、N兩點(diǎn),且線段MN=2$\sqrt{3}$,則直線l的斜率為( 。
A.±$\sqrt{3}$B.±$\frac{\sqrt{3}}{3}$C.±1D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an},{bn}滿足a1=1,an+1=2an+1,b1=4,bn-bn-1=an+1(n≥2).
(Ⅰ)求證:數(shù)列{an+1}是等比數(shù)列;
(Ⅱ)求數(shù)列{an},{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在下列命題中,不是公理的是( 。
A.經(jīng)過兩條相交直線有且只有一個(gè)平面
B.平行于同一直線的兩條直線互相平行
C.如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)
D.如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么他們有且只有一條過該點(diǎn)的公共直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.對于任意正整數(shù)n,猜想2n-1與(n+1)2的大小關(guān)系,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.若關(guān)于x的不等式x2-ax+b<0的解集為(1,2),求函數(shù)f(x)=(a-1)$\sqrt{x-3}$+(b-1)$\sqrt{4-x}$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,平面區(qū)域W由滿足x2+y2≤5的點(diǎn)的(x,y)構(gòu)成.
(Ⅰ)若x∈Z,y∈Z,在W中任取點(diǎn)M(x,y),求點(diǎn)M位于第四象限的概率;
(Ⅱ)若x,y∈R,在W中任取點(diǎn)M(x,y),求y+x>$\frac{\sqrt{10}}{2}$的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=2(n-1)x在全體實(shí)數(shù)范圍內(nèi)為減函數(shù),求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若f(x)為R上的奇函數(shù),且在(-∞,0)內(nèi)是增函數(shù),又f(-2)=0,則xf(x)<0的解集為(-2,0)∪(0,2).

查看答案和解析>>

同步練習(xí)冊答案