【題目】已知函數(shù).
(1)當時,討論的零點情況;
(2)當時,記在上的最小值為m,求證:.
【答案】(1)答案不唯一,見解析;(2)見解析
【解析】
(1)必有一個零點,可通過分析的零點得到的零點情況;
(2)對求導,分析導函數(shù)中的正負情況,得到的單調性,由此可計算出的表示,再次構造關于的新函數(shù)求解出的范圍即可.
(1)的定義域為.令,則.分情況討論:
①當時,,則,.
所以在上有三個零點,分別為,和1.
②當時,,
所以在上有兩個零點,分別為.
③當時,,所以,對,恒成立.
從而,在上有一個零點1.
綜上所述:當時,有三個零點:,和1;
當時,有兩個零點:,;當時,有一個零點為:;
(2)當時,,定義域為.
則.
當時,,令,.
所以在上單調遞增.∵,,
由零點存在性定理,存在,使得,即
故當時,;當時,.
∴在上單調遞減,在上單調遞增.
所以,.
令,則.
所以在上單調遞減.故,而,,
從而,即.
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列滿足對任意的恒成立,為其前n項的和,且,.
(1)求數(shù)列的通項;
(2)數(shù)列滿足,其中.
①證明:數(shù)列為等比數(shù)列;
②求集合
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(1)求f(x)的單調遞增區(qū)間;
(2)設△ABC的三個內角A,B,C的對邊分別為a,b,c,若且a=2時,求△ABC周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中已知橢圓過點,其左、右焦點分別為,離心率為.
(1)求橢圓E的方程;
(2)若A,B分別為橢圓E的左、右頂點,動點M滿足,且MA交橢圓E于點P.
(i)求證:為定值;
(ii)設PB與以PM為直徑的圓的另一交點為Q,問:直線MQ是否過定點,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=4x+3sinx,x∈(-1,1),如果f(1-a)+f(1-a2)<0成立,則實數(shù)a的取值范圍為( )
A. (0,1) B. C. D. (-∞,-2)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域I=(﹣∞,0)∪(0,+∞),在(0,+∞)上為增函數(shù),且x1,x2∈I,恒有f(x1x2)=f(x1)+f(x2).
(1)求證:f(x)是偶函數(shù):
(2)若f(m)﹣f(2m+1)<3m2+4m+1,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上兩定點M(0,﹣2)、N(0,2),P為一動點,滿足||||
(I)求動點P的軌跡C的方程;
(II)若A、B是軌跡C上的兩不同動點,且λ.分別以A、B為切點作軌跡C的切線,設其交點Q,證明為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知是曲線:上的動點,將繞點順時針旋轉得到,設點的軌跡為曲線.以坐標原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線,的極坐標方程;
(2)在極坐標系中,點,射線與曲線,分別相交于異于極點的兩點,求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com