9.如圖,在△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=60°,a=3.求△ABC的周長L的最大值.

分析 利用正弦定理把b,c用B,C表示出來,根據(jù)C=$\frac{2π}{3}-B$將L表示成關(guān)于B的函數(shù),利用B的范圍求出L的最大值.

解答 解:由正弦定理得$\frac{c}{sinC}=\frac{sinB}=\frac{a}{sinA}=2\sqrt{3}$.
∴b=2$\sqrt{3}$sinB,c=2$\sqrt{3}$sinC=2$\sqrt{3}$sin($\frac{2π}{3}-B$)=3cosB+$\sqrt{3}$sinB.
∴L=a+b+c=3+3$\sqrt{3}$sinB+3cosC=3+6sin(B+$\frac{π}{6}$).
∵0<B<$\frac{2π}{3}$,
∴當(dāng)B=$\frac{π}{3}$時,L取得最大值9.

點評 本題考查了正弦定理,三角函數(shù)的恒等變換,正弦函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=sinx-$\frac{x}{2}$.當(dāng)0<x<1時,不等式f(x)•log2(x-2m+$\frac{5}{4}$)>0恒成立.則實數(shù)m得到取值范圍是(-∞,-2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=cos(ωx+φ)的部分圖象如圖所示,則下列結(jié)論成立的是(  )
A.f(x)的遞增區(qū)間是(2kπ-$\frac{5π}{12}$,2kπ+$\frac{π}{12}$),k∈Z
B.函數(shù)f(x-$\frac{π}{3}$)是奇函數(shù)
C.函數(shù)f(x-$\frac{π}{12}$)是偶函數(shù)
D.f(x)=cos(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|lo{g}_{3}x|\\;0<x<3}\\{sin(\frac{π}{6}x)\\;3≤x≤15}\end{array}\right.$,若存在實數(shù)x1,x2,x3,x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4,則x1x2x3x4取值范圍是(  )
A.(60,96)B.(45,72)C.(30,48)D.(15,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.閱讀如圖所示的程序框,若輸入的n是30,則輸出的變量S的值是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若cos2x=1,x∈R,x={x|x=kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在長為2的線段AB上任意取一點C,以線段AC為半徑的圓面積小于π的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知a1+2a2+3a3+…+nan=$\frac{1}{4}$[(2n-1)an+1+1],a1=1,則an=3n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知關(guān)于x的方程x2-(5+i)x+4+ai=0(a∈R)有實數(shù)根b,則|a+bi|等于( 。
A.$\sqrt{2}$B.4$\sqrt{2}$C.$\sqrt{2}$或4$\sqrt{2}$D.5

查看答案和解析>>

同步練習(xí)冊答案