如圖,已知△ABC的三個頂點分別是A(0,3)、B(3,3)、C(2,0),直線l與BC邊平行,分別交AB邊、AC邊于點D、E,且將△ABC分成面積相等的兩部分,求直線l的方程.

思路解析:利用直線l與BC邊平行的條件求出l的斜率,結合定比分點坐標公式求出D點坐標,再由點斜式即可求.

解:∵DE∥BC,∴△ABC∽△ADE.

===.

∴點D分所成比λ===+1.

∴xD==,yD=3.∴D(,3).

又∵kBC==3,∴kDE=kBC=3.

∴直線l的方程為y-3=3(x-),即6x-2y+6-9=0.

深化升華

    “面積比等于相似比的平方”這一結論不僅適用于三角形,對于其他封閉的相似圖形也同樣適用.本題利用一重要結論,將原問題轉化為定比分點問題求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為14,D、E分別為邊AB、BC上的點,且AD:DB=BE:EC=2:1,AE與CD交于P.設存在λ和μ使
AP
AE
,
PD
CD
,
AB
=
a
,
BC
=
b

(1)求λ及μ;
(2)用
a
,
b
表示
BP
;
(3)求△PAC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的頂點坐標依次為A(1,0),B(5,8),C(7,-4),在邊AB上有一點P,其橫坐標為4,在AC上求一點Q,使線段PQ把△ABC分成面積相等的兩部分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△ABC的頂點為A(2,4),B(0,-2),C(-2,3),求:
(Ⅰ)AB邊所在直線的方程;
(Ⅱ)AB邊上的高線CH所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC的外角∠EAC的平分線與△ABC的外接圓交于點D,以CD為直徑的圓分別交BC,CA于點P、Q,求證:線段PQ平分△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省高二上學期第一次段考理科數(shù)學卷 題型:填空題

如圖,已知△ABC的平面直觀圖是邊長為2的正三角形,則原△ABC的面積為__________.

 

查看答案和解析>>

同步練習冊答案