5.函數(shù)f(x)=$\frac{2x-1}{x+3}$(x∈(-5,-4)∪(2,5)),則f(x)的值域是(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$).

分析 分離常數(shù)可得f(x)=$\frac{2x-1}{x+3}$=2-$\frac{7}{x+3}$,由x的范圍和不等式的性質(zhì)逐步求范圍可得.

解答 解:f(x)=$\frac{2x-1}{x+3}$=2-$\frac{7}{x+3}$,
∵x∈(-5,-4)∪(2,5),
∴x+3∈(-2,-1)∪(5,8),
∴f(x)∈(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$),
故答案為(-5,-1.5)∪($\frac{9}{8}$,$\frac{15}{11}$).

點(diǎn)評 本題考查分式函數(shù)的值域,分離常數(shù)并用不等式的性質(zhì)是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在等比數(shù)列{an}中,Sn=3n-1,求{an}的公比q和通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)定義域?yàn)镽的函數(shù)f(x)=$\left\{\begin{array}{l}{lg|x-2|,x≠2}\\{4,x=2}\end{array}\right.$,則關(guān)于x的方程f2(x)+bf(x)+c=0有5個(gè)不同的實(shí)數(shù)解xi(i=1,2,3,4,5),則f(x1+x2+x3+x4+x5+2)=(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.$\sqrt{3}+1$與$\sqrt{3}-1$,兩數(shù)的等比中項(xiàng)是( 。
A.1B.-1C.±1D.$±\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={1,2,3},B={2,3},則( 。
A.A=BB.B∈AC.A?BD.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若過原點(diǎn)O的直線與圓C:(x-2)2+y2=1相交于P、Q兩點(diǎn).
(1)求$\overrightarrow{CP}$•$\overrightarrow{CQ}$的取值范圍;
(2)求△CPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f(x)=x4+ax3+bx2+cx+d,其中a、b、c、d為常數(shù).如果f(1)=10,f(2)=20,f(3)=30,那么,$\frac{1}{4}$[f(4)+f(0)]的值是( 。
A.1B.4C.7D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow a$=(cosx+sinx,2sinx),$\overrightarrow b$=(cosx-sinx,cosx).令f(x)=$\overrightarrow a$•$\overrightarrow b$.
(I)求f(x)的最小正周期;
(II)求f(x)在[${\frac{π}{4}$,$\frac{3π}{4}}$]上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,點(diǎn)M在線段EC上.
(Ⅰ)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:BM∥平面ADEF;
(Ⅱ)當(dāng)平面BDM與平面ABF所成銳二面角的余弦值為$\frac{\sqrt{6}}{6}$時(shí),求棱錐M-BDE的體積.

查看答案和解析>>

同步練習(xí)冊答案