A. | 3$\sqrt{3}$+1 | B. | 2$\sqrt{2}$-1 | C. | 3$\sqrt{3}$-1 | D. | 2$\sqrt{2}$+1 |
分析 可設(shè)a=tanα,2b=tanβ,3c=tanγ,且α,β,γ∈(0,$\frac{π}{2}$),由同角的基本關(guān)系式,可得cos2α+cos2β+cos2γ=1,構(gòu)造長(zhǎng)方體ABCD-A1B1C1D1,設(shè)三邊長(zhǎng)為x,y,z,可得長(zhǎng)方體的對(duì)角線與三邊的夾角的余弦的平方和為1,由正切函數(shù)的定義,結(jié)合基本不等式即可得到最小值.
解答 解:可設(shè)a=tanα,2b=tanβ,3c=tanγ,且α,β,γ∈(0,$\frac{π}{2}$),
即有$\frac{1}{1+ta{n}^{2}α}$+$\frac{1}{1+ta{n}^{2}β}$+$\frac{1}{1+ta{n}^{2}γ}$=1,
即$\frac{1}{se{c}^{2}α}$+$\frac{1}{se{c}^{2}β}$+$\frac{1}{se{c}^{2}γ}$=cos2α+cos2β+cos2γ=1,
構(gòu)造長(zhǎng)方體ABCD-A1B1C1D1,設(shè)三邊長(zhǎng)為x,y,z,
可得長(zhǎng)方體的對(duì)角線與三邊的夾角的余弦的平方和為1,
則|6abc-1|=|tanαtanβtanγ-1|=|$\frac{\sqrt{{x}^{2}+{y}^{2}}}{z}$•$\frac{\sqrt{{y}^{2}+{z}^{2}}}{x}$•$\frac{\sqrt{{z}^{2}+{x}^{2}}}{y}$-1|
≥|$\frac{\sqrt{2xy}}{z}$•$\frac{\sqrt{2yz}}{x}$•$\frac{\sqrt{2zx}}{y}$-1|=|2$\sqrt{2}$-1|=2$\sqrt{2}$-1.
當(dāng)且僅當(dāng)x=y=z時(shí),取得最小值2$\sqrt{2}$-1.
故選:B.
點(diǎn)評(píng) 本題考查最值的求法,注意運(yùn)用三角換元和構(gòu)造長(zhǎng)方體,運(yùn)用基本不等式,考查運(yùn)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com