3.已知雙曲線$\frac{x^2}{m^2}-{y^2}=1(m>0)$與拋物線y2=4x的準線交于A,B兩點,O為坐標原點,若△AOB的面積等于1,則m=( 。
A.$\sqrt{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

分析 根據(jù)條件求出拋物線的漸近線,聯(lián)立方程求出A,B的坐標,根據(jù)三角形的面積建立方程進行求解即可.

解答 解:拋物線的準線為x=-1,
當x=-1時,$\frac{1}{{m}^{2}}$-y2=1,
即y2=$\frac{1}{{m}^{2}}$-1=$\frac{1-{m}^{2}}{{m}^{2}}$,0<m<1,
則y=±$\sqrt{\frac{1-{m}^{2}}{{m}^{2}}}$,
設A(-1,$\sqrt{\frac{1-{m}^{2}}{{m}^{2}}}$),B(-1,-$\sqrt{\frac{1-{m}^{2}}{{m}^{2}}}$),
則AB=2•$\sqrt{\frac{1-{m}^{2}}{{m}^{2}}}$,
則S=$\frac{1}{2}×$2$\sqrt{\frac{1-{m}^{2}}{{m}^{2}}}$×1=1,
即1-m2=m2,
則m2=$\frac{1}{2}$,
則m=$\frac{{\sqrt{2}}}{2}$,
故選:C

點評 本題主要考查雙曲線和拋物線的應用,根據(jù)條件建立方程組關系是解決本題的關鍵.考查學生的計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.若函數(shù)y=f(x)對?x∈R恒有f(x+1)=f(x-1)=-f(1-x)成立,且y=f(x)不是常值函數(shù),則函數(shù)y=f(x)在區(qū)間[-3,3]上的零點至少有( 。
A.3個B.4個C.6個D.7個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=-x2+2ax+1,x∈[-1,2],求f(x)的最大值(其中a∈R).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=sin2xcos2x+cos22x,則函數(shù)f(x)的最大值為$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若函數(shù)y=sinx的圖象上所有點的橫坐標變?yōu)樵械?\frac{1}{2}$,縱坐標不變得函數(shù)f(x)的圖象,函數(shù)f(x)的圖象向左平移φ(0<φ<π)個單位,得函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象,則φ的值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知不等式ax2+bx+2>0的解集為{x|-1<x<2},求不等式2x2+bx+a≤0的解集[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知動點P位于拋物線y2=4x上,定點An的坐標為($\frac{2}{3}$n,0)(n=1,2,3,4),則|$\overrightarrow{P{A}_{1}}$+$\overrightarrow{P{A}_{2}}$|+|$\overrightarrow{P{A}_{3}}$+$\overrightarrow{P{A}_{4}}$|的最小值為( 。
A.4B.$\frac{10}{3}$C.$\frac{20}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.設橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1與函數(shù)y=tan$\frac{x}{4}$的圖象相交于A1,A2兩點,若點P在橢圓C上,且直線PA2的斜率的取值范圍[-2,-1],那么直線PA1斜率的取值范圍是$[\frac{3}{8},\frac{3}{4}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設A、B、C、D四點都在同一個平面上,且$\overrightarrow{AC}$+4$\overrightarrow{DC}$=5$\overrightarrow{BC}$,則( 。
A.$\overrightarrow{AB}$=4$\overrightarrow{BD}$B.$\overrightarrow{AB}$=5$\overrightarrow{BD}$C.$\overrightarrow{AC}$=4$\overrightarrow{BD}$D.$\overrightarrow{AC}$=5$\overrightarrow{BD}$

查看答案和解析>>

同步練習冊答案